Spintronic PUFs for Security, Trust, and Authentication

We propose spintronic physically unclonable functions (PUFs) to exploit security-specific properties of domain wall memory (DWM) for security, trust, and authentication. We note that the nonlinear dynamics of domain walls (DWs) in the physical magnetic system is an untapped source of entropy that can be leveraged for hardware security. The spatial and temporal randomness in the physical system is employed in conjunction with microscopic and macroscopic properties such as stochastic DW motion, stochastic pinning/depinning, and serial access to realize novel relay-PUF and memory-PUF designs. The proposed PUFs show promising results (∼50% interdie Hamming distance (HD) and 10% to 20% intradie HD) in terms of randomness, stability, and resistance to attacks. We have investigated noninvasive attacks, such as machine learning and magnetic field attack, and have assessed the PUFs resilience.

[1]  Anirudh Iyengar,et al.  Domain Wall Magnets for Embedded Memory and Hardware Security , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[2]  Stuart A. Wolf,et al.  Spintronics: A Spin-Based Electronics Vision for the Future , 2001, Science.

[3]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[4]  Masamitsu Hayashi,et al.  Current driven dynamics of magnetic domain walls in permalloy nanowires , 2006 .

[5]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[6]  R. Pappu,et al.  Physical One-Way Functions , 2002, Science.

[7]  Shufeng Zhang,et al.  Identification of transverse spin currents in noncollinear magnetic structures. , 2004, Physical review letters.

[8]  Miron Abramovici,et al.  Integrated circuit security: new threats and solutions , 2009, CSIIRW '09.

[9]  Patrick Schaumont,et al.  A large scale characterization of RO-PUF , 2010, 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).

[10]  Garrett S. Rose,et al.  Nanoelectronics and Hardware Security , 2014, Network Science and Cybersecurity.

[11]  Supriyo Datta,et al.  All spin logic: Modeling multi-magnet networks interacting via spin currents , 2012 .

[12]  Miodrag Potkonjak,et al.  Nanoelectronic Solutions for Hardware Security , 2012, IACR Cryptology ePrint Archive.

[13]  Kirill N. Alekseev,et al.  Dynamical chaos in magnetic systems , 1992 .

[14]  Shinobu Fujita,et al.  High-Speed Magnetoresistive Random-Access Memory Random Number Generator Using Error-Correcting Code , 2016, ArXiv.

[15]  J. Nguenang,et al.  Chaos Appearance during Domain Wall Motion under Electronic Transfer in Nanomagnets , 2013 .

[16]  P. Chevalier,et al.  Racetrack memory cell array with integrated magnetic tunnel junction readout , 2011, 2011 International Electron Devices Meeting.

[17]  Berk Sunar,et al.  Towards Robust Low Cost Authentication for Pervasive Devices , 2008, 2008 Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom).

[18]  T. Endoh,et al.  A content addressable memory using magnetic domain wall motion cells , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[19]  Yu Zheng,et al.  ScanPUF: Robust ultralow-overhead PUF using scan chain , 2013, 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC).

[20]  Dianne Easterling,et al.  March , 1890, The Hospital.

[21]  Shan X. Wang,et al.  Alternative information storage technologies , 1999 .

[22]  Jeyavijayan Rajendran,et al.  Hardware security: Threat models and metrics , 2013, 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[23]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[24]  Swaroop Ghosh,et al.  Self-correcting STTRAM under magnetic field attacks , 2015, 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[25]  G. Edward Suh,et al.  Flash Memory for Ubiquitous Hardware Security Functions: True Random Number Generation and Device Fingerprints , 2012, 2012 IEEE Symposium on Security and Privacy.

[26]  Stephen A. Benton,et al.  Physical one-way functions , 2001 .

[27]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[28]  A. MacDonald,et al.  Thermally assisted current-driven domain-wall motion. , 2006, Physical review letters.

[29]  Mahdi Jamali,et al.  Metastable magnetic domain wall dynamics , 2011, 1110.0175.

[30]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[31]  Daniel E. Holcomb,et al.  Power-Up SRAM State as an Identifying Fingerprint and Source of True Random Numbers , 2009, IEEE Transactions on Computers.

[32]  Dmitri E. Nikonov,et al.  Taxonomy of spintronics (a zoo of devices) , 2006 .

[33]  H. Okuno Chaos and energy loss of nonlinear domain wall motion , 1997 .

[34]  Paulo P. Freitas,et al.  Observation of s‐d exchange force between domain walls and electric current in very thin Permalloy films , 1985 .

[35]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[36]  Supriyo Bandyopadhyay,et al.  Introduction to spintronics , 2008 .

[37]  Paul C. Kocher,et al.  The intel random number generator , 1999 .

[38]  Swaroop Ghosh,et al.  DWM-PUF: A low-overhead, memory-based security primitive , 2014, 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST).

[39]  Steven M. Nowick,et al.  ACM Journal on Emerging Technologies in Computing Systems , 2010, TODE.

[40]  Boris Skoric,et al.  Read-Proof Hardware from Protective Coatings , 2006, CHES.

[41]  Laura Rountree Smith January , 1890, The Hospital.

[42]  L. Berger,et al.  Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films , 1984 .

[43]  Lyal B. Harris November , 1890, The Hospital.

[44]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .