Bioconversion of pentose sugars into ethanol: A review and future directions

Hemicelluloses, the second most abundant polysaccharide in nature, are well suited for ethanol production due to their enormous availability, low cost and environmental benign process. The major fraction in hemeicelluloses is pentosans and the conversion of pentosans to ethanol is problematic. To get the process economized, the conversion of hemicellulose to ethanol with a satisfactory yield is necessary. In recent years, significant advances have been made towards the technology of pentosans to ethanol conversion. However, there are technical and economical impediments to the development of commercially viable processes utilizing hemicellulosic derived sugars. This article provides an overview of the new insights in pentose sugars conversion into ethanol, pentoses resources, microorganisms and the technology.

[1]  S. L. Rosenberg Fermentation of pentose sugars to ethanol and other neutral products by microorganisms , 1980 .

[2]  M. Taherzadeh,et al.  Production of ethanol and mycelial biomass from rice straw hemicellulose hydrolyzate by Mucor indicus , 2006 .

[3]  C. Wyman,et al.  Features of promising technologies for pretreatment of lignocellulosic biomass. , 2005, Bioresource technology.

[4]  S. Sokhansanj,et al.  Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses , 2006 .

[5]  J N Nigam,et al.  Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. , 2001, Journal of biotechnology.

[6]  T. Jeffries,et al.  Engineering yeasts for xylose metabolism. , 2006, Current opinion in biotechnology.

[7]  A. Boussaid,et al.  The influence of bark on the fermentation of Douglas-fir whitewood pre-hydrolysates , 2002, Applied Microbiology and Biotechnology.

[8]  Robert P. Chambers,et al.  Red oak wood derived inhibitors in the ethanol fermentation of xylose byPichia stipitis CBS 5776 , 1985, Biotechnology Letters.

[9]  B. Dien,et al.  Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. , 2000, Applied biochemistry and biotechnology.

[10]  D. Perlman OBSERVATIONS ON THE PRODUCTION OF ETHANOL BY FUNGI AND YEASTS , 1950 .

[11]  N. Lee,et al.  Crystalline L-ribulokinase from Escherichia coli. , 1967, The Journal of biological chemistry.

[12]  L. Ingram,et al.  Expression of Different Levels of Ethanologenic Enzymes from Zymomonas mobilis in Recombinant Strains of Escherichia coli , 1988, Applied and environmental microbiology.

[13]  John N. Saddler,et al.  Bioconversion of Forest and Agricultural Plant Residues , 1993 .

[14]  L. Ingram,et al.  Genetic engineering of ethanol production in Escherichia coli , 1987, Applied and environmental microbiology.

[15]  T. Jeffries,et al.  Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. , 2010, Bioresource technology.

[16]  O. Singh,et al.  The realm of penicillin G acylase in β-lactam antibiotics , 2008 .

[17]  Bernhard Sonnleitner,et al.  Biotechnology of Thermophilic Bacteria — Growth, Products, and Application , 1983, Microbial Activities.

[18]  O. Singh,et al.  Biotechnological Applications of Hemicellulosic Derived Sugars: State-of-the-Art , 2010 .

[19]  Joseph DiPardo Outlook for Biomass Ethanol Production and Demand by Joseph DiPardo , 2000 .

[20]  O. Singh,et al.  Key drivers influencing the commercialization of ethanol-based biorefineries , 2010 .

[21]  Thomas W. Jeffries,et al.  Emerging technology for fermenting d-xylose , 1985 .

[22]  D. Updegraff,et al.  Ethanol production from sugars derived from plant biomass by a novel fungus , 1986, Nature.

[23]  K. Schügerl,et al.  High productivity ethanol fermentations with crossflow membrane separation techniques for continuous cell recycling , 1985 .

[24]  L. Ingram,et al.  Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli , 1992, Applied and environmental microbiology.

[25]  A. Singh,et al.  Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): Fermentation behaviour , 1996 .

[26]  Seiya Watanabe,et al.  Efficient Bioethanol Production by a Recombinant Flocculent Saccharomyces cerevisiae Strain with a Genome-Integrated NADP+-Dependent Xylitol Dehydrogenase Gene , 2009, Applied and Environmental Microbiology.

[27]  David Williams,et al.  The production of ethanol by immobilized yeast cells , 1981 .

[28]  M. Lakshmi Narasu,et al.  Economic evaluation and environmental benefits of biofuel: an Indian perspective , 2007 .

[29]  C. Wilke,et al.  Utilization of cellulosic materials through enzymatic hydrolysis. II. Preliminary assessment of an integrated processing scheme , 1976, Biotechnology and bioengineering.

[30]  O. Singh,et al.  Bioconversion of novel substrate Saccharum spontaneum, a weedy material, into ethanol by Pichia stipitis NCIM3498. , 2011, Bioresource technology.

[31]  V. Deshpande,et al.  Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa , 1986 .

[32]  T. Jeffries Unstable petite and grande variants of Candida shehatae , 1984, Biotechnology Letters.

[33]  R. Kuhad,et al.  Strain improvement of thermotolerant Saccharomyces cerevisiae VS3 strain for better utilization of lignocellulosic substrates , 2007, Journal of applied microbiology.

[34]  Special Session A Microbial pentose metabolism , 2004, Applied biochemistry and biotechnology.

[35]  Tony Scott,et al.  Analysis of performance , 2005 .

[36]  Y. Shoham,et al.  Microbial hemicellulases. , 2003, Current opinion in microbiology.

[37]  Min Zhang,et al.  Metabolic Engineering of a Pentose Metabolism Pathway in Ethanologenic Zymomonas mobilis , 1995, Science.

[38]  Shiyuan Yu,et al.  Adaptation of Candida shehatae and Pichia stipitis to wood hydrolysates for increased ethanol production , 1986, Applied Microbiology and Biotechnology.

[39]  W. Parawira,et al.  Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review , 2011, Critical reviews in biotechnology.

[40]  E. Chan,et al.  Economics and environmental impact of bioethanol production technologies: an appraisal , 2007 .

[41]  G. T. Tsao,et al.  Conversion of pentoses by yeasts , 1983, Biotechnology and bioengineering.

[42]  I. Dunn,et al.  Performance of a multistage fermentor with cell recycle for continuous ethanol production , 1997 .

[43]  K. Schügerl,et al.  Bioconversion of cellulosic materials to ethanol by filamentous fungi. , 1992 .

[44]  J. Spencer,et al.  Characterization of hybrids obtained by protoplast fusion, between Pachysolen tannophilus and Saccharomyces cerevisiae , 1993, Applied Microbiology and Biotechnology.

[45]  J. H. Alcoholic Fermentation , 1911, Nature.

[46]  Yan Zhu,et al.  The importance of engineering physiological functionality into microbes. , 2009, Trends in biotechnology.

[47]  T. D'amore,et al.  Physiological effects of yeast cell immobilization Applications for brewing , 1994 .

[48]  William G. Hopkins An Introduction to Plant Physiology , 1932, Nature.

[49]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[50]  Siddhartha Datta,et al.  Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation , 1998 .

[51]  D. Hopwood Genetic studies with bacterial protoplasts. , 1981, Annual review of microbiology.

[52]  Havva Balat,et al.  Recent trends in global production and utilization of bio-ethanol fuel , 2009 .

[53]  M. Ladisch,et al.  Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations , 1985, Biotechnology Letters.

[54]  P. Linko,et al.  Alcoholic fermentation of D-xylose by immobilizedPichia stipitis yeast , 2005, Biotechnology Letters.

[55]  C. Wilke,et al.  Utilization of cellulosic materials through enzymatic hydrolysis. I. Fermentation of hydrolysate to ethanol and single‐cell protein , 1976, Biotechnology and bioengineering.

[56]  G Chandrasekhar,et al.  Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. , 2009, Bioresource technology.

[57]  T. Tosa,et al.  Transformations of organic compounds by immobilized microbial cells. , 1977, Advances in applied microbiology.

[58]  Ajay Singh,et al.  Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. , 2007, Bioresource technology.

[59]  B. Saha,et al.  Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol , 2005 .

[60]  M. Galbe,et al.  Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content , 2006 .

[61]  Seiya Watanabe,et al.  Identification and Characterization of l-Arabonate Dehydratase, l-2-Keto-3-deoxyarabonate Dehydratase, and l-Arabinolactonase Involved in an Alternative Pathway of l-Arabinose Metabolism , 2006, Journal of Biological Chemistry.

[62]  Robert A. Scholtz,et al.  Performance Analysis of , 1998 .

[63]  J N Nigam,et al.  Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. , 2002, Journal of biotechnology.

[64]  R. Maleszka,et al.  Concurrent Production and Consumption of Ethanol by Cultures of Pachysolen tannophilus Growing on d-Xylose , 1982, Applied and environmental microbiology.

[65]  Wood Wa,et al.  Purification and properties of L-xylulokinase. , 1962 .

[66]  J. Ogbonna,et al.  Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor. , 2001, Bioresource technology.

[67]  Nurdan Eken-Saraçoğlu,et al.  Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae , 2000, Biotechnology Letters.

[68]  B. Hahn-Hägerdal,et al.  Towards industrial pentose-fermenting yeast strains , 2007, Applied Microbiology and Biotechnology.

[69]  A. Singh,et al.  Fusarium oxysporum: status in bioethanol production. , 1991, Critical reviews in biotechnology.

[70]  Paul Christakopoulos,et al.  Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system , 2009, Biotechnology for biofuels.

[71]  T. W. Jeffries,et al.  Bacteria engineered for fuel ethanol production: current status , 2003, Applied Microbiology and Biotechnology.

[72]  M. Taherzadeh,et al.  Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review , 2007, BioResources.

[73]  T. Jeffries Utilization of xylose by bacteria, yeasts, and fungi. , 1983, Advances in biochemical engineering/biotechnology.

[74]  B. Hahn-Hägerdal,et al.  Ethanolic fermentation of pentoses in lignocellulose hydrolysates , 1991, Applied biochemistry and biotechnology.

[75]  A. Chandel,et al.  Bioconversion of De-Oiled Rice Bran (DORB) Hemicellulosic Hydrolysate into Ethanol by Pichia stipitis NCM3499 under Optimized Conditions , 2009 .

[76]  W. Steiner,et al.  Basic research and pilot studies on the enzymatic conversion of lignocellulosics , 1993 .

[77]  B. Ahring,et al.  Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. , 2004, Biochemical Society transactions.

[78]  B. Hahn-Hägerdal,et al.  Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor , 1998, Applied Microbiology and Biotechnology.

[79]  A. P. James,et al.  The Construction and Genetic Analysis of Polyploids and Aneuploids of the Pentose-fermenting Yeast, Pachysolen tannophilus , 1983 .

[80]  M. Taherzadeh,et al.  Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review , 2007, BioResources.

[81]  K. Kida,et al.  Repeated-batch fermentation process using a thermotolerant flocculating yeast constructed by protoplast fusion , 1992 .

[82]  L. Ingram,et al.  Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli , 1991, Biotechnology and bioengineering.

[83]  N. Ho,et al.  Genetically Engineered SaccharomycesYeast Capable of Effective Cofermentation of Glucose and Xylose , 1998, Applied and Environmental Microbiology.

[84]  Ibrahim M. Banat,et al.  Immobilization technologies and support materials suitable in alcohol beverages production: a review , 2004 .

[85]  J. Barabás,et al.  Production of ethanol from whey. , 1990 .

[86]  G J Davies,et al.  The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition. , 2001, Structure.

[87]  T. Jeffries,et al.  Production of ethanol from wood hydrolyzate by yeasts. , 2000 .

[88]  P. Gunasekaran,et al.  Bioethanol production from cellulosic substrates: Engineered bacteria and process integration challenges , 2005 .

[89]  M. Galbe,et al.  Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. , 2004, Bioresource technology.

[90]  M. Masson,et al.  Crystalline L-ribulose 5-phosphate 4-epimerase from Escherichia coli. , 1968, The Journal of biological chemistry.

[91]  G. Zacchi,et al.  Kinetics of ethanol production by recombinant Escherichia coli KO11 , 1995, Biotechnology and bioengineering.

[92]  J. Peberdy Protoplast fusion — a tool for genetic manipulation and breeding in industrial microorganisms , 1980 .

[93]  Sarad R. Parekh,et al.  Biotechnology of biomass conversion : fuels and chemicals from renewable resources , 1990 .

[94]  Rl Howard,et al.  Lignocellulose biotechnology: issues of bioconversion and enzyme production , 2003 .

[95]  S. Parekh,et al.  Fermentation of wood-derived acid hydrolysates in a batch bioreactor and in a continuous dynamic immobilized cell bioreactor by Pichia stipitis R , 1987 .

[96]  John D. Wright,et al.  Xylose fermentation , 1989 .

[97]  Andrew G. Glen,et al.  APPL , 2001 .

[98]  R. Braun,et al.  Dilute-acid hydrolysis of sugarcane bagasse at varying conditions , 2002 .

[99]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[100]  B. Saha,et al.  Hemicellulose bioconversion , 2003, Journal of Industrial Microbiology and Biotechnology.

[101]  J. Moreno,et al.  Yeast biocapsules : A new immobilization method and their applications , 2006 .