Unifying notions of generalized weights for universal security on wire-tap networks

Universal security over a network with linear network coding has been intensively studied. However, previous linear codes used for this purpose were linear over a larger field than that used on the network. In this work, we introduce new parameters (relative dimension/rank support profile and relative generalized matrix weights) for linear codes that are linear over the field used in the network, measuring the universal security performance of these codes. The proposed new parameters enable us to use optimally universal secure linear codes on noiseless networks for all possible parameters, as opposed to previous works, and also enable us to add universal security to the recently proposed list-decodable rank-metric codes by Guruswami et al. We give several properties of the new parameters: monotonicity, Singleton-type lower and upper bounds, a duality theorem, and definitions and characterizations of equivalences of linear codes. Finally, we show that our parameters strictly extend relative dimension/length profile and relative generalized Hamming weights, respectively, and relative dimension/intersection profile and relative generalized rank weights, respectively. Moreover, we show that generalized matrix weights are larger than Delsarte generalized weights.

[1]  Frank R. Kschischang,et al.  Universal Secure Network Coding via Rank-Metric Codes , 2008, IEEE Transactions on Information Theory.

[2]  Ning Cai,et al.  Network coding and error correction , 2002, Proceedings of the IEEE Information Theory Workshop.

[3]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[4]  Iwan M. Duursma,et al.  Coset bounds for algebraic geometric codes , 2008, Finite Fields Their Appl..

[5]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[6]  Kefei Chen,et al.  Some new characters on the wire-tap channel of type II , 2005, IEEE Transactions on Information Theory.

[7]  Emina Soljanin,et al.  Secure Network Coding for Wiretap Networks of Type II , 2009, IEEE Transactions on Information Theory.

[8]  J. Dieudonné,et al.  Sur une généralisation du groupe orthogonal à quatre variables , 1948 .

[9]  Tomohiko Uyematsu,et al.  Relative Generalized Rank Weight of Linear Codes and Its Applications to Network Coding , 2013, IEEE Transactions on Information Theory.

[10]  J'erome Ducoat,et al.  Generalized rank weights : a duality statement , 2013, 1306.3899.

[11]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[12]  G. David Forney,et al.  Dimension/length profiles and trellis complexity of linear block codes , 1994, IEEE Trans. Inf. Theory.

[13]  Henning Stichtenoth On the dimension of subfield subcodes , 1990, IEEE Trans. Inf. Theory.

[14]  Umberto Martínez-Peñas On the Similarities Between Generalized Rank and Hamming Weights and Their Applications to Network Coding , 2016, IEEE Transactions on Information Theory.

[15]  T. Ho,et al.  On Linear Network Coding , 2010 .

[16]  M. Marcus,et al.  Linear Transformations on Algebras of Matrices , 1959, Canadian Journal of Mathematics.

[17]  I. G. Núñez,et al.  Generalized Hamming Weights for Linear Codes , 2001 .

[18]  Frédérique E. Oggier,et al.  On the existence of generalized rank weights , 2012, 2012 International Symposium on Information Theory and its Applications.

[19]  Frank R. Kschischang,et al.  On Metrics for Error Correction in Network Coding , 2008, IEEE Transactions on Information Theory.

[20]  Muriel Médard,et al.  An algebraic approach to network coding , 2003, TNET.

[21]  Thomas M. Cover,et al.  Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) , 2006 .

[22]  John G. van Bosse,et al.  Wiley Series in Telecommunications and Signal Processing , 2006 .

[23]  R. Yeung,et al.  Secure network coding , 2002, Proceedings IEEE International Symposium on Information Theory,.

[24]  Venkatesan Guruswami,et al.  Explicit List-Decodable Rank-Metric and Subspace Codes via Subspace Designs , 2016, IEEE Transactions on Information Theory.

[25]  Yuan Luo,et al.  Relative generalized Hamming weights of one-point algebraic geometric codes , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[26]  Katherine Morrison,et al.  Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes , 2013, IEEE Transactions on Information Theory.

[27]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[28]  Jon Feldman,et al.  On the Capacity of Secure Network Coding , 2004 .

[29]  Hao Chen,et al.  Secure Computation from Random Error Correcting Codes , 2007, EUROCRYPT.

[30]  Alberto Ravagnani,et al.  Generalized weights: an anticode approach , 2014, ArXiv.

[31]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[32]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[33]  Bahram Honary,et al.  Reducible rank codes and their applications to cryptography , 2003, IEEE Trans. Inf. Theory.

[34]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[35]  Ruud Pellikaan,et al.  On defining generalized rank weights , 2017, Adv. Math. Commun..