Towards quantitative reconstruction of peatland nutrient status from fens

In rich fens, unlike bogs, the key drivers structuring testate amoeba communities are related to nutrient status, suggesting the potential for transfer functions to quantitatively reconstruct changing nutrient status from palaeoecological records. Such records could be useful tools to investigate the long-term impacts of pollution and landscape change. Here, we derive and test transfer functions for pH, water-table depth, conductivity and Ca and Mg concentrations using a data set from Polish fens. Results show that transfer functions for Ca and conductivity have apparent predictive power for surface samples; these models will require further validation and testing with palaeoecological data. Testate amoeba transfer functions for fen nutrient status may be a valuable addition to the peatland palaeoecologist’s tool-kit, although further work will be required to demonstrate their usefulness in practice.

[1]  M. Gałka,et al.  A 1300‐year multi‐proxy, high‐resolution record from a rich fen in northern Poland: reconstructing hydrology, land use and climate change , 2013 .

[2]  P. Hájková,et al.  Formation, succession and landscape history of Central-European summit raised bogs: A multiproxy study from the Hrubý Jeseník Mountains , 2013 .

[3]  M. Gałka,et al.  Palaeohydrology, fires and vegetation succession in the southern Baltic during the last 7500 years reconstructed from a raised bog based on multi-proxy data , 2013 .

[4]  E. Mitchell,et al.  The performance of single- and multi-proxy transfer functions (testate amoebae, bryophytes, vascular plants) for reconstructing mire surface wetness and pH , 2013, Quaternary Research.

[5]  R. Patterson,et al.  Development of an Arcellacea (testate lobose amoebae) based transfer function for sedimentary Phosphorus in lakes , 2012 .

[6]  R. Telford,et al.  Testing peatland testate amoeba transfer functions: Appropriate methods for clustered training-sets , 2012 .

[7]  E. Mitchell,et al.  Can pollution bias peatland paleoclimate reconstruction? , 2012, Quaternary Research.

[8]  A. Grootjans,et al.  How a Sphagnum fuscum‐dominated bog changed into a calcareous fen: the unique Holocene history of a Slovak spring‐fed mire , 2012 .

[9]  S. Juggins rioja: Analysis of Quaternary Science Data , 2012 .

[10]  H. Birks,et al.  Quantitative Environmental Reconstructions from Biological Data , 2012 .

[11]  Ł. Lamentowicz,et al.  Testate Amoeba (Arcellinida, Euglyphida) Ecology along a Poor-Rich Gradient in Fens of Western Poland , 2011 .

[12]  Richard J. Telford,et al.  A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages , 2011 .

[13]  H. Birks,et al.  Effect of uneven sampling along an environmental gradient on transfer-function performance , 2011 .

[14]  R. Payne Can testate amoeba‐based palaeohydrology be extended to fens? , 2011 .

[15]  D. Charman,et al.  Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies , 2010 .

[16]  R. Patterson,et al.  Controls on the contemporary distribution of lake thecamoebians (testate amoebae) within the Greater Toronto Area and their potential as water quality indicators , 2010 .

[17]  E. Mitchell,et al.  How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae , 2009 .

[18]  D. Charman,et al.  Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: Implications for Holocene palaeoclimate studies , 2009 .

[19]  Tomasz Giętkowski,et al.  Zmiany lesistości Borów Tucholskich w latach 1938 – 2000 , 2009 .

[20]  M. Zobel Autogenic succession in boreal mires — A review , 1988, Folia Geobotanica et Phytotaxonomica.

[21]  E. Mitchell,et al.  Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future , 2008, Biodiversity and Conservation.

[22]  M. Hájek,et al.  The Variation of Testacean Assemblages (Rhizopoda) Along the Complete Base-Richness Gradient in Fens: A Case Study from the Western Carpathians , 2006 .

[23]  B. Ammann Litho- and palynostratigraphy at Lobsigensee: Evidences for trophic changes during the Holocene , 1986, Hydrobiologia.

[24]  K. J. Clarke Guide to the identification of soil protozoa - testate amoebae. , 2003 .

[25]  D. Charman,et al.  Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables , 2002 .

[26]  D. Charman Biostratigraphic and palaeoenvironmental applications of testate amoebae , 2001 .

[27]  H. Birks,et al.  D.G. Frey and E.S. Deevey Review 1: Numerical tools in palaeolimnology – Progress, potentialities, and problems , 1998 .

[28]  E. C. Wardenaar A new hand tool for cutting peat profiles , 1987 .

[29]  C.J.F. ter Braak,et al.  Weighted averaging of species indicator values: Its efficiency in environmental calibration , 1986 .

[30]  C. G. Ogden,et al.  An Atlas of Freshwater Testate Amoebae , 1980 .

[31]  C. G. Ogden Shell Structure in Some Pyriform Species of Diffugia (Rhizopodea) , 1980 .

[32]  C. G. Ogden,et al.  Further observations on pyriform species of Difflugia (Rhizopodea) , 1979 .

[33]  L. Decloître Le Genre Centropyxis I Compléments à jour au 31. décembre 1974 de la Monographie du genre parue en 1929 , 1978 .