Towards a Better Modelling of the Cell Formation Problem: An Overview of Decisions and a Critical analysis of Constraints and Objectives

Cell formation problem is among the first obstacles the designer of cellular production systems must overcome. This paper presents a critical analysis of the various criteria and constraints considered in the literature. The objective is to help any researcher who wants to model the problem by adopting a multi-criteria approach.

[1]  Mingyuan Chen,et al.  A mathematical approach for the formation of manufacturing cells , 2005, Comput. Ind. Eng..

[2]  Tom M. Cavalier,et al.  Virtual manufacturing cells: exploiting layout design and intercell flows for the machine sharing problem , 1993 .

[3]  S. Sofianopoulou Application of simulated annealing to a linear model forthe formulation of machine cells ingroup technology , 1997 .

[4]  Stefano Tonchia,et al.  Manufacturing flexibility: A literature review , 1998 .

[5]  R. Rajagopalan,et al.  Design of cellular production systems A graph-theoretic approach , 1975 .

[6]  Rakesh Nagi,et al.  Multiple routeings and capacity considerations in group technology applications , 1990 .

[7]  G. K. Adil,et al.  Cell formation considering alternate routeings , 1996 .

[8]  Jannes Slomp,et al.  The capacitated cell formation problem : a new hierarchical methodology , 1995 .

[9]  F. Boctor A Jinear formulation of the machine-part cell formation problem , 1991 .

[10]  M. S. Akturk,et al.  Part-machine grouping using a multi-objective cluster analysis , 1996 .

[11]  John L. Burbidge,et al.  Production flow analysis , 1963 .

[12]  Chih-Ming Hsu,et al.  Multi-objective machine-part cell formation through parallel simulated annealing , 1998 .

[13]  K. Al-Sultan,et al.  A genetic algorithm for thepart family formation problem , 1997 .

[14]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[15]  Henri Pierreval,et al.  An evolutionary approach of multicriteria manufacturing cell formation , 1998 .

[16]  J. C. Wei,et al.  A capacity constrained multiobjective cell formation method , 1990 .

[17]  Rakesh Nagi,et al.  Manufacturing cell formation under random product demand , 1994 .

[18]  David Upton,et al.  What Really Makes Factories Flexible , 1995 .

[19]  Jeffrey A. Joines,et al.  A hybrid genetic algorithm for manufacturing cell design , 2000 .

[20]  M. Chandrasekharan,et al.  Grouping efficacy: a quantitative criterion for goodness of block diagonal forms of binary matrices in group technology , 1990 .

[21]  Shine-Der Lee,et al.  A weighted approach for cellular manufacturing design: Minimizing intercell movement and balancing workload among duplicated machines , 1997 .

[22]  Asoo J. Vakharia,et al.  Designing a Cellular Manufacturing System: A Materials Flow Approach Based on Operation Sequences , 1990 .

[23]  John L. Burbidge,et al.  The introduction of group technology , 1975 .

[24]  M. Chandrasekharan,et al.  GROUPABIL1TY: an analysis of the properties of binary data matrices for group technology , 1989 .

[25]  T. T. Narendran,et al.  Cell formation in manufacturing systems through simulated annealing: An experimental evaluation , 1992 .

[26]  J. King Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm , 1980 .

[27]  Rasaratnam Logendran,et al.  A methodology for simultaneously dealing with machine duplication and part subcontracting in cellular manufacturing systems , 1997, Comput. Oper. Res..

[28]  Divakar Rajamani,et al.  Design of cellular manufacturing systems , 1996 .

[29]  S. H. Zegordi,et al.  Multi-criterion Tackling Bottleneck Machines and Exceptional Parts in Cell Formation Using Genetic Algorithms , 2002 .

[30]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[31]  Mingyuan Chen,et al.  A mathematical programming model for system reconfiguration in a dynamic cellular manufacturing environment , 1998, Ann. Oper. Res..

[32]  R. Logendran,et al.  Manufacturing cell formation in the presence of lot splitting and multiple units of the same machine , 1995 .

[33]  Mingyuan Chen,et al.  A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality , 2008, Eur. J. Oper. Res..

[34]  T. Narendran,et al.  A genetic algorithm approach to the machine-component grouping problem with multiple objectives , 1992 .

[35]  Dong Cao,et al.  Using penalty function and Tabu search to solve cell formation problems with fixed cell cost , 2004, Comput. Oper. Res..

[36]  Chuen-Sheng Cheng,et al.  A neural network-based cell formation algorithm in cellular manufacturing , 1995 .

[37]  Elin M. Wicks,et al.  Designing cellular manufacturing systems with dynamic part populations , 1999 .

[38]  Peter J. Fleming,et al.  Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation , 2003, EMO.

[39]  S. M. Taboun,et al.  Converting functional manufacturing systems into focused machine cells— a bicriterion approach , 1995 .

[40]  Mitsuo Gen,et al.  A genetic algorithm-based approach for design of independent manufacturing cells , 1999 .

[41]  Yong Yin,et al.  Similarity coefficient methods applied to the cell formation problem: A taxonomy and review , 2006 .

[42]  N.-E. Dahel,et al.  Designing flexibility into cellular manufacturing systems , 1993 .

[43]  Mahesh Gupta,et al.  Minimizing total intercell and intracell moves in cellular manufacturing: a genetic algorithm approach , 1995 .

[44]  S. Zolfagha Ri,et al.  AN OBJECTIVE-GUIDED ORTHO-SYNAPSE HOPFIELD NETWORK APPROACH TO MACHINE GROUPING PROBLEMS , 1997 .

[45]  Menouar Boulif,et al.  A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem , 2006, Comput. Oper. Res..

[46]  B. Sarker,et al.  A comparison of existing grouping efficiency measures and a new weighted grouping efficiency measure , 2001 .

[47]  Ja-Shen Chen,et al.  Stepwise decomposition approaches for large scale cell formation problems , 1999, Eur. J. Oper. Res..

[48]  Ronald G. Askin,et al.  A graph partitioning procedure for machine assignment and cell formation in group technology , 1990 .

[49]  Tarun Gupta,et al.  Production data based similarity coefficient for machine-component grouping decisions in the design of a cellular manufacturing system , 1990 .

[50]  R. Lashkari,et al.  A mathematical programming approach to joint cell formation and operation allocation in cellular manufacturing , 1995 .

[51]  P. Verma,et al.  A sequence-based materials flow procedure for designing manufacturing cells , 1995 .

[52]  Hokey Min,et al.  Simultaneous formation of machine and human cells in group technology: a multiple objective approach , 1993 .

[53]  Jerry C. Wei,et al.  A mathematical programming approach for dealing with exceptional elements in cellular manufacturing , 1992 .