FMRP-Mediated Axonal Delivery of miR-181d Regulates Axon Elongation by Locally Targeting Map1b and Calm1.

[1]  David Villarroel-Campos,et al.  The MAP1B case: An old MAP that is new again , 2014, Developmental neurobiology.

[2]  Murray J. Cairns,et al.  Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons , 2014, Nucleic acids research.

[3]  Y. Goshima,et al.  Identification of axon‐enriched MicroRNAs localized to growth cones of cortical neurons , 2014, Developmental neurobiology.

[4]  J. Flanagan,et al.  MicroRNA-132 Is Enriched in Developing Axons, Locally Regulates Rasa1 mRNA, and Promotes Axon Extension , 2013, The Journal of Neuroscience.

[5]  Amar N. Kar,et al.  MicroRNAs in the axon and presynaptic nerve terminal , 2013, Front. Cell. Neurosci..

[6]  G. Schratt,et al.  The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. , 2013, Genes & development.

[7]  Xu Zhang,et al.  MEC-17 Deficiency Leads to Reduced α-Tubulin Acetylation and Impaired Migration of Cortical Neurons , 2012, The Journal of Neuroscience.

[8]  D. V. Vactor,et al.  MicroRNAs Shape the Neuronal Landscape , 2012, Neuron.

[9]  F. Guillemot,et al.  microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons , 2012, Nature Neuroscience.

[10]  Xu Zhang,et al.  Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons , 2011, Cell Research.

[11]  R. Giffard,et al.  miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo , 2012, Neurobiology of Disease.

[12]  Byung C. Yoon,et al.  Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair , 2012, Nature Reviews Neuroscience.

[13]  G. Schratt,et al.  Dopamine-Regulated MicroRNA MiR-181a Controls GluA2 Surface Expression in Hippocampal Neurons , 2011, Molecular and Cellular Biology.

[14]  Alison A. Staton,et al.  Use of target protector morpholinos to analyze the physiological roles of specific miRNA-mRNA pairs in vivo , 2011, Nature Protocols.

[15]  T. Soderling,et al.  Local Application of Neurotrophins Specifies Axons Through Inositol 1,4,5-Trisphosphate, Calcium, and Ca2+/Calmodulin–Dependent Protein Kinases , 2011, Science Signaling.

[16]  D. Licatalosi,et al.  FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism , 2011, Cell.

[17]  S. Warren,et al.  Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. , 2011, Molecular cell.

[18]  R. Meredith,et al.  Proteomics, Ultrastructure, and Physiology of Hippocampal Synapses in a Fragile X Syndrome Mouse Model Reveal Presynaptic Phenotype* , 2011, The Journal of Biological Chemistry.

[19]  Giovanni Coppola,et al.  Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. , 2011, RNA.

[20]  E. Tortosa,et al.  MAP1B Regulates Axonal Development by Modulating Rho-GTPase Rac1 Activity , 2010, Molecular biology of the cell.

[21]  Matthias Merkenschlager,et al.  Small RNAs Control Sodium Channel Expression, Nociceptor Excitability, and Pain Thresholds , 2010, The Journal of Neuroscience.

[22]  Hannah V. McCue,et al.  The diversity of calcium sensor proteins in the regulation of neuronal function. , 2010, Cold Spring Harbor perspectives in biology.

[23]  A. Riccio,et al.  An NGF-responsive element targets myo-inositol monophosphatase-1 mRNA to sympathetic neuron axons , 2010, Nature Neuroscience.

[24]  J. Darnell,et al.  A Mouse Model of the Human Fragile X Syndrome I304N Mutation , 2009, PLoS genetics.

[25]  K. Kosik,et al.  MicroRNAs Potentiate Neural Development , 2009, Neuron.

[26]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[27]  Noo Li Jeon,et al.  Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein , 2009, Nature Cell Biology.

[28]  S. Ceman,et al.  Translation regulation of mRNAs by the fragile X family of proteins through the microRNA pathway , 2009, RNA biology.

[29]  S. Warren,et al.  Fragile X Syndrome: Loss of Local mRNA Regulation Alters Synaptic Development and Function , 2008, Neuron.

[30]  Robert H Singer,et al.  A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. , 2008, Developmental cell.

[31]  C. Holt,et al.  Function and regulation of local axonal translation , 2008, Current Opinion in Neurobiology.

[32]  Yue Feng,et al.  Dynamic association of the fragile X mental retardation protein as a messenger ribonucleoprotein between microtubules and polyribosomes. , 2008, Molecular biology of the cell.

[33]  R. Carroll,et al.  Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses , 2006, Molecular and Cellular Neuroscience.

[34]  S. Dedhar,et al.  NGF-Induced Axon Growth Is Mediated by Localized Inactivation of GSK-3β and Functions of the Microtubule Plus End Binding Protein APC , 2004, Neuron.

[35]  D. Ginty,et al.  Evidence in Support of Signaling Endosome-Based Retrograde Survival of Sympathetic Neurons , 2003, Neuron.

[36]  B. Oostra,et al.  The Fragile X Syndrome Protein FMRP Associates with BC1 RNA and Regulates the Translation of Specific mRNAs at Synapses , 2003, Cell.

[37]  Robert H. Singer,et al.  Single mRNA Molecules Demonstrate Probabilistic Movement in Living Mammalian Cells , 2003, Current Biology.

[38]  F. Rice,et al.  Development of Sensory Neurons in the Absence of NGF/TrkA Signaling In Vivo , 2000, Neuron.

[39]  M. Barbacid,et al.  Synchronous Onset of NGF and TrkA Survival Dependence in Developing Dorsal Root Ganglia , 1996, The Journal of Neuroscience.