Fractal space-times under the microscope: a renormalization group view on Monte Carlo data

A bstractThe emergence of fractal features in the microscopic structure of space-time is a common theme in many approaches to quantum gravity. In this work we carry out a detailed renormalization group study of the spectral dimension ds and walk dimension dw associated with the effective space-times of asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling regimes where these generalized dimensions are approximately constant for an extended range of length scales: a classical regime where ds = d, dw = 2, a semi-classical regime where ds = 2d/(2 + d), dw = 2 + d, and the UV-fixed point regime where ds = d/2, dw = 4. On the length scales covered by three-dimensional Monte Carlo simulations, the resulting spectral dimension is shown to be in very good agreement with the data. This comparison also provides a natural explanation for the apparent puzzle between the short distance behavior of the spectral dimension reported from Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and Asymptotic Safety.

[1]  Gianluca Calcagni,et al.  Geometry and field theory in multi-fractional spacetime , 2011, 1107.5041.

[2]  Gravity and the standard model with neutrino mixing , 2006, hep-th/0610241.

[3]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[4]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[5]  Dario Benedetti,et al.  Fractal properties of quantum spacetime. , 2008, Physical review letters.

[6]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[7]  Martin Reuter,et al.  Scale-dependent metric and causal structures in Quantum Einstein Gravity , 2007 .

[8]  Fixed points of quantum gravity in extra dimensions , 2006, hep-th/0602203.

[9]  Alfio Bonanno,et al.  Entropy signature of the running cosmological constant , 2007, 0706.0174.

[10]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[11]  Martin Reuter,et al.  Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism invariance , 2008, 0804.1475.

[12]  M. Niedermaier On the Renormalization of Truncated Quantum Einstein Gravity , 2022 .

[13]  Martin Reuter,et al.  Running gauge coupling in asymptotically safe quantum gravity , 2009, 0910.4938.

[14]  G. Calcagni Geometry of fractional spaces , 2011, 1106.5787.

[15]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[16]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[17]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[18]  S. Alexander,et al.  Density of states on fractals : « fractons » , 1982 .

[19]  F. Saueressig,et al.  A Class of nonlocal truncations in quantum Einstein gravity and its renormalization group behavior , 2002 .

[20]  E. Akkermans,et al.  Thermodynamics of photons on fractals. , 2010, Physical review letters.

[21]  Frank Saueressig,et al.  Matter Induced Bimetric Actions for Gravity , 2010, 1003.5129.

[22]  S. Carlip Spontaneous Dimensional Reduction , 2012, 1207.4503.

[23]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[24]  Martin Reuter,et al.  A minimal length from the cutoff modes in asymptotically safe quantum gravity , 2006 .

[25]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[26]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[27]  S. Sengupta,et al.  Accelerating Universe without Bigbang Singularity in Kalb-Ramond Cosmology , 2002 .

[28]  Martin Reuter,et al.  Bare action and regularized functional integral of asymptotically safe quantum gravity , 2008, 0811.3888.

[29]  H. Gies,et al.  Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.

[30]  F. Saueressig,et al.  Four‐derivative Interactions in Asymptotically Safe Gravity , 2009, 0909.3265.

[31]  Spectral triples for AF C*-algebras and metrics on the cantor set , 2003, math/0309044.

[32]  Frank Saueressig,et al.  Functional Renormalization Group Equations, Asymptotic Safety, and Quantum Einstein Gravity , 2007, 0708.1317.

[33]  Average Effective Potential for the Conformal Factor , 1993, hep-th/9305172.

[34]  M. Reuter,et al.  Quantum gravity at astrophysical distances , 2004 .

[35]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[36]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[37]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[38]  M. Reuter,et al.  The role of background independence for asymptotic safety in Quantum Einstein Gravity , 2009, 0903.2971.

[39]  S. Carlip The Small Scale Structure of Spacetime , 2010, 1009.1136.

[40]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[41]  Gianluca Calcagni,et al.  Fractional and noncommutative spacetimes , 2011, 1107.5308.

[42]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[43]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[44]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[45]  M. Niedermaier,et al.  Gravitational fixed points from perturbation theory. , 2009, Physical review letters.

[46]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[47]  F. Caravelli,et al.  1 3 M ay 2 00 9 Fractal Dimension in 3 d Spin-Foams , 2009 .

[48]  A. Bonanno,et al.  Proper time flow equation for gravity , 2005 .

[49]  J. Jurkiewicz,et al.  Quantum gravity as sum over spacetimes , 2009, 0906.3947.

[50]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[51]  I. Stamatescu,et al.  Approaches to Fundamental Physics , 2007 .

[52]  G. Calcagni Gravity on a multifractal , 2010, 1012.1244.

[53]  Frank Saueressig,et al.  The universal RG machine , 2010, 1012.3081.

[54]  Physical consequences of complex dimensions of fractals , 2009, 0903.3681.

[55]  Frank Saueressig,et al.  Bimetric renormalization group flows in quantum Einstein gravity , 2010, 1006.0099.

[56]  Frank Saueressig,et al.  Asymptotically safe Lorentzian gravity. , 2011, Physical review letters.

[57]  Matt Visser,et al.  Spectral dimension as a probe of the ultraviolet continuum regime of causal dynamical triangulations. , 2011, Physical review letters.

[58]  Roberto Percacci,et al.  Fixed points of higher-derivative gravity. , 2006, Physical review letters.

[59]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[60]  G. Calcagni Fractal universe and quantum gravity. , 2009, Physical review letters.

[61]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[62]  B. A. Brown,et al.  Investigations of three-, four-, and five-particle decay channels of levels in light nuclei created using a C9 beam , 2011, 1105.1144.

[63]  G. Calcagni Quantum field theory, gravity and cosmology in a fractal universe , 2010, 1001.0571.

[64]  Asymptotic Safety in Quantum Einstein Gravity: Nonperturbative Renormalizability and Fractal Spacetime Structure , 2005, hep-th/0511260.

[65]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[66]  Astrid Eichhorn,et al.  Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.

[67]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[68]  Daniele Guido,et al.  Dimensions and singular traces for spectral triples, with applications to fractals , 2003 .

[69]  Martin Reuter,et al.  Effective Potential of the Conformal Factor: Gravitational Average Action and Dynamical Triangulations , 2008, 0806.3907.

[70]  Masao Ninomiya,et al.  Renormalization Group and Quantum Gravity , 1990 .

[71]  R. Percacci,et al.  Conformally reduced quantum gravity revisited , 2009, 0904.2510.

[72]  M. Reuter,et al.  Quantum Einstein gravity: Towards an asymptotically safe field theory of gravity , 2007 .

[73]  Noncommutative geometry and the standard model with neutrino mixing , 2006, hep-th/0608226.

[74]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[75]  Frank Saueressig,et al.  Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.

[76]  S. Carlip Spontaneous Dimensional Reduction in Short‐Distance Quantum Gravity? , 2009, 0909.3329.

[77]  Shlomo Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems: Diffusion in the Sierpinski gasket , 2000 .

[78]  Reconstructing the universe , 2005, hep-th/0505154.

[79]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[80]  Dimensionally reduced gravity theories are asymptotically safe , 2003, hep-th/0304117.

[81]  Martin Reuter,et al.  Background Independence and Asymptotic Safety in Conformally Reduced Gravity , 2008, 0801.3287.

[82]  L. Modesto Fractal spacetime from the area spectrum , 2009 .

[83]  Martin Reuter,et al.  Bimetric Truncations for Quantum Einstein Gravity and Asymptotic Safety , 2009, 0907.2617.