Synthesis of single-crystal-like TiO2 hierarchical spheres with exposed {1 0 1} and {1 1 1} facets via lysine-inspired method

[1]  I. O. Mazali,et al.  Singular effect of crystallite size on the charge carrier generation and photocatalytic activity of nano-TiO2 , 2014 .

[2]  Yang Xu,et al.  Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template , 2014 .

[3]  Wenjun Zhu,et al.  Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold , 2014 .

[4]  Wei Xiao,et al.  Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets. , 2014, Journal of the American Chemical Society.

[5]  M. Karaman,et al.  Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method , 2013 .

[6]  Yu Huang,et al.  Biomolecular specificity controlled nanomaterial synthesis. , 2013, Chemical Society reviews.

[7]  N. Umezawa,et al.  Anatase TiO2 Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H2 Evolution , 2013 .

[8]  H. Wan,et al.  Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity , 2013 .

[9]  H. Bai,et al.  The effect of fabrication method of hierarchical 3D TiO2 nanorod spheres on photocatalytic pollutants degradation , 2012 .

[10]  Jun Pan,et al.  Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis , 2012 .

[11]  T. Nonoyama,et al.  TiO2 synthesis inspired by biomineralization: control of morphology, crystal phase, and light-use efficiency in a single process. , 2012, Journal of the American Chemical Society.

[12]  K. Lv,et al.  Cysteine modified anatase TiO2 hollow microspheres with enhanced visible-light-driven photocatalytic activity , 2012 .

[13]  F. Tian,et al.  RAMAN SPECTROSCOPY: A NEW APPROACH TO MEASURE THE PERCENTAGE OF ANATASE TIO2 EXPOSED (001) FACETS , 2012 .

[14]  Hailong Yang,et al.  Sphere-like CuGaS2 nanoparticles synthesized by a simple biomolecule-assisted solvothermal route , 2011 .

[15]  X. Lü,et al.  Mesoporous hollow TiO2 microspheres with enhanced photoluminescence prepared by a smart amino acid template , 2011 .

[16]  Meiqing Shen,et al.  Single-crystal-like titania mesocages. , 2011, Angewandte Chemie.

[17]  Jimmy C. Yu,et al.  Biocompatible Anatase Single-Crystal Photocatalysts with Tunable Percentage of Reactive Facets , 2010 .

[18]  Hao Wang,et al.  Facile synthesis of ZnS nanostructured spheres and their photocatalytic properties , 2009 .

[19]  T. Do,et al.  Shape-controlled synthesis of highly crystalline titania nanocrystals. , 2009, ACS nano.

[20]  Kaiyu Liu,et al.  l-Lysine-Assisted Synthesis of ZrO2 Nanocrystals and Their Application in Photocatalysis , 2009 .

[21]  S. Yin,et al.  Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals , 2009 .

[22]  Di Zhang,et al.  Biomorphic mineralization: From biology to materials , 2009 .

[23]  Sean C. Smith,et al.  Solvothermal synthesis and photoreactivity of anatase TiO(2) nanosheets with dominant {001} facets. , 2009, Journal of the American Chemical Society.

[24]  F. Aldinger,et al.  Bioinspired synthesis of crystalline TiO2: effect of amino acids on nanoparticles structure and shape , 2007 .

[25]  Yinjuan Xie,et al.  Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. , 2006, The journal of physical chemistry. B.

[26]  X. Wang,et al.  Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron(III)-doped TiO2 nanopowders under UV and visible light irradiation. , 2006, The journal of physical chemistry. B.

[27]  K. Hanabusa,et al.  Fabrication of TiO2 using L-lysine-based organogelators as organic templates: control of the nanostructures. , 2006, Chemical communications.

[28]  M. Han,et al.  Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. , 2005, Angewandte Chemie.

[29]  Kiyoshi Kanie,et al.  Shape control of anatase TiO2 nanoparticles by amino acids in a gel-sol system. , 2004, Chemical communications.

[30]  J. Cheon,et al.  Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. , 2003, Journal of the American Chemical Society.

[31]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[32]  C. Howard,et al.  Structural and thermal parameters for rutile and anatase , 1991 .

[33]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .

[34]  Chang-Tang Chang,et al.  Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen , 2015 .

[35]  Hexing Li,et al.  Ordered mesoporous TiO2 with exposed (001) facets and enhanced activity in photocatalytic selective oxidation of alcohols , 2013 .