En route to supramolecular functional plasticity: artificial β-barrels, the barrel-stave motif, and related approaches

This review emphasizes recent or pertinent efforts to create functional plasticity with artificial barrel-stave supramolecules and related motifs. On the structural level, a summary of engineered, de novo designed, and artificial β-barrels beyond peptide chemistry is followed by representative α-helix bundles and barrel-stave supramolecules comprising oligonucleotides, inorganic architecture, and organic barrel-stave ion channel models. On the functional level, selected examples are given to highlight divers aspects of molecular recognition, translocation, and transformation that are currently accessible with artificial barrel-stave supramolecules.

[1]  M Wilmanns,et al.  Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. , 2000, Science.

[2]  Gerhard F. Swiegers,et al.  New Self-Assembled Structural Motifs in Coordination Chemistry (Chem. Rev. 2000, 100, xxxx. Published on the Web July 15, 2000.). , 2000, Chemical reviews.

[3]  Charles R. Martin,et al.  Resistive-Pulse SensingFrom Microbes to Molecules , 2000 .

[4]  S. Matile,et al.  Giant Artificial Ion Channels Formed by Self-Assembled, Cationic Rigid-Rodβ-Barrels , 2000 .

[5]  L. Regan,et al.  Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein , 2000 .

[6]  A. Skerra,et al.  A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. , 2000, Journal of molecular biology.

[7]  Bruce A. Moyer,et al.  Binding Cesium Ions with Nucleosides: Templated Self‐Assembly of Isoguanosine Pentamers , 2000 .

[8]  Jonathan L. Sessler,et al.  A G‐Quartet Formed in the Absence of a Templating Metal Cation: A New 8‐(N,N‐dimethylaniline)guanosine Derivative , 2000 .

[9]  Jeffrey S. Moore,et al.  Foldamer-Based Molecular Recognition , 2000 .

[10]  Alan R. Fersht,et al.  Directed evolution of new catalytic activity using the α/β-barrel scaffold , 2000, Nature.

[11]  S. Otto,et al.  Detection of Nonideal Mixing of Phospholipids in Fluid Bilayers , 2000 .

[12]  R. Anderegg,et al.  Metal-ion binding and limited proteolysis of betabellin 15D, a designed beta-sandwich protein , 1999, Journal of the American Society for Mass Spectrometry.

[13]  K. Biradha,et al.  Quantitative Formation of Coordination Nanotubes Templated by Rodlike Guests , 1999 .

[14]  Ü. Langel,et al.  Peptitergent PD1 affects the GTPase activity of rat brain cortical membranes , 1999, Peptides.

[15]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[16]  L. Baltzer,et al.  Substrate Recognition and Saturation Kinetics in de Novo Designed Histidine-Based Four-Helix Bundle Catalysts , 1998 .

[17]  X. Zhou,et al.  A VOLTAGE-GATED ION CHANNEL BASED ON A BIS-MACROCYCLIC BOLAAMPHIPHILE , 1998 .

[18]  A. Ménez,et al.  Engineering cyclophilin into a proline-specific endopeptidase , 1998, Nature.

[19]  F. Szoka,et al.  Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers. , 1997, Biochemistry.

[20]  U. Soomets,et al.  Attempt to solubilize Na+/K+-exchanging ATPase with amphiphilic peptide PD1. , 1997, Acta chemica Scandinavica.

[21]  R. Lerner,et al.  From molecular diversity to catalysis: lessons from the immune system. , 1995, Science.

[22]  T. Sueyoshi,et al.  Molecular engineering of microsomal P450 2a-4 to a stable, water-soluble enzyme. , 1995, Archives of biochemistry and biophysics.

[23]  L. Miercke,et al.  Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. , 1993, Science.

[24]  Anna Tramontano,et al.  A designed metal-binding protein with a novel fold , 1993, Nature.