Primordial black holes in a dimensionally reduced universe
暂无分享,去创建一个
[1] M. Lenzi,et al. Quantum formation of primordial black holes , 2018, General Relativity and Gravitation.
[2] A. Giusti,et al. Lower-dimensional corpuscular gravity and the end of black hole evaporation , 2018, Modern Physics Letters A.
[3] A. Tzikas,et al. Cosmological production of black holes: A way to constrain alternative theories of gravity , 2017, Physical Review D.
[4] Steven Carlip,et al. Dimension and dimensional reduction in quantum gravity , 2017, Universe.
[5] Marcus Bleicher,et al. The Good, the Bad, and the Ugly of Gravity and Information , 2016, 1609.01725.
[6] Sven Köppel,et al. Geometric Model of Black Hole Quantum N-portrait, Extradimensions and Thermodynamics , 2016, Entropy.
[7] R. Casadio,et al. Horizon of quantum black holes in various dimensions , 2015, 1509.09317.
[8] R. Mann,et al. Lower-Dimensional Black Hole Chemistry , 2015, 1509.05481.
[9] B. Carr,et al. Sub-Planckian black holes and the Generalized Uncertainty Principle , 2015, Journal of High Energy Physics.
[10] J. Magueijo,et al. Dimensional reduction in the sky , 2013, 1305.3153.
[11] P. Nicolini,et al. Holographic Screens in Ultraviolet Self-Complete Quantum Gravity , 2012, 1210.0015.
[12] P. Nicolini,et al. Self-completeness and spontaneous dimensional reduction , 2012, The European Physical Journal Plus.
[13] Jonas Mureika. Primordial Black Hole Evaporation and Spontaneous Dimensional Reduction , 2012, 1204.3619.
[14] G. Calcagni. Diffusion in quantum geometry , 2012, 1204.2550.
[15] Frank Saueressig,et al. Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.
[16] R. Mann,et al. ( 1 + 1 ) -dimensional entropic gravity , 2011, 1105.5925.
[17] P. Nicolini,et al. Aspects of noncommutative (1+1)-dimensional black holes , 2011, 1104.4120.
[18] R. Mann,et al. Cosmological production of noncommutative black holes , 2011, 1102.5096.
[19] R. Mann,et al. DOES ENTROPIC GRAVITY BOUND THE MASSES OF THE PHOTON AND GRAVITON? , 2010, Modern Physics Letters A.
[20] P. Nicolini,et al. Un-spectral dimension and quantum spacetime phases , 2010, 1005.1509.
[21] L. Modesto. Fractal spacetime from the area spectrum , 2009 .
[22] Piero Nicolini,et al. Spectral dimension of a quantum universe , 2009, 0912.0220.
[23] L. Modesto. Fractal Structure of Loop Quantum Gravity , 2008, 0812.2214.
[24] R. Meyer,et al. Ramifications of Lineland , 2006, hep-th/0604049.
[25] J. Jurkiewicz,et al. The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.
[26] M. Reuter,et al. Fractal spacetime structure in asymptotically safe gravity , 2005, hep-th/0508202.
[27] J. Jurkiewicz,et al. Spectral dimension of the universe , 2005, hep-th/0505113.
[28] B. Taylor,et al. CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2005, 1203.5425.
[29] D. Vassilevich,et al. Dilaton gravity in two-dimensions , 2002, hep-th/0204253.
[30] W. Piechocki. Topology of the Universe , 1999, gr-qc/9910055.
[31] R. Cai,et al. Action and entropy of black holes in spacetimes with a cosmological constant , 1997, gr-qc/9708062.
[32] George T. Gillies,et al. The Newtonian gravitational constant: recent measurements and related studies , 1997 .
[33] R. Bousso. Charged Nariai black holes with a dilaton , 1996, gr-qc/9608053.
[34] R. Bousso,et al. Pair creation of black holes during inflation. , 1996, Physical review. D, Particles and fields.
[35] R. Bousso,et al. Probability for primordial black holes. , 1995, Physical review. D, Particles and fields.
[36] Ross,et al. Cosmological production of charged black hole pairs. , 1995, Physical review. D, Particles and fields.
[37] Ross,et al. Duality between electric and magnetic black holes. , 1995, Physical review. D, Particles and fields.
[38] R. Mann. Lower Dimensional Black Holes: Inside and Out , 1995, gr-qc/9501038.
[39] R. Mann,et al. Gravitation and cosmology in generalized (1+1)-dimensional dilaton gravity , 1994, gr-qc/9408032.
[40] G. Hooft. Dimensional Reduction in Quantum Gravity , 1993, gr-qc/9310026.
[41] R. Mann,et al. Liouville Black Holes , 1993, hep-th/9308034.
[42] R. Mann,et al. The D to 2 limit of general relativity , 1992, gr-qc/9208004.
[43] R. Mann. Two Dimensional Quantum Gravity Coupled to Matter , 1992, hep-th/9206100.
[44] L. Romans. Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory , 1992, hep-th/9203018.
[45] R. Mann,et al. Thermodynamics and quantum aspects of black holes in (1+1) dimensions , 1992 .
[46] R. Mann,et al. Classical and quantum properties of two-dimensional black holes , 1990 .
[47] J. Atick,et al. The Hagedorn Transition and the Number of Degrees of Freedom of String Theory , 1988 .
[48] J. Brown. Lower Dimensional Gravity , 1988 .
[49] J. MacGibbon. Can Planck-mass relics of evaporating black holes close the Universe? , 1987, Nature.
[50] J. Hartle,et al. Wave Function of the Universe , 1983 .
[51] S. Hawking,et al. Classification of Gravitational Instanton symmetries , 1979 .
[52] P. Collas. Erratum: “General relativity in two‐ and three‐dimensional space times” [Am. J. Phys. 45, 833 (1977)] , 1978 .
[53] P. Collas. General relativity in two‐ and three‐dimensional space–times , 1977 .
[54] S. Hawking,et al. Black Holes in the Early Universe , 1974 .
[55] W. Marsden. I and J , 2012 .
[56] Rong-Gen Cai,et al. Action and entropy of black holes in spacetimes with a cosmological constant , 1998 .
[57] A. Kamenshchik,et al. Euclidean Quantum Gravity , 1997 .