The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections

The APOBEC family of proteins comprises deaminase enzymes that edit DNA and/or RNA sequences. The APOBEC3 subgroup plays an important role on the innate immune system, acting on host defense against exogenous viruses and endogenous retroelements. The role of APOBEC3 proteins in the inhibition of viral infection was firstly described for HIV-1. However, in the past few years many studies have also shown evidence of APOBEC3 action on other viruses associated with human diseases, including HTLV, HCV, HBV, HPV, HSV-1, and EBV. APOBEC3 inhibits these viruses through a series of editing-dependent and independent mechanisms. Many viruses have evolved mechanisms to counteract APOBEC effects, and strategies that enhance APOBEC3 activity constitute a new approach for antiviral drug development. On the other hand, novel evidence that editing by APOBEC3 constitutes a source for viral genetic diversification and evolution has emerged. Furthermore, a possible role in cancer development has been shown for these host enzymes. Therefore, understanding the role of deaminases on the immune response against infectious agents, as well as their role in human disease, has become pivotal. This review summarizes the state-of-the-art knowledge of the impact of APOBEC enzymes on human viruses of distinct families and harboring disparate replication strategies.

[1]  E. Petersen,et al.  Herpes simplex viruses. , 2009 .

[2]  E. Clercq Frontiers in Microbiology , 1987, New Perspectives in Clinical Microbiology.

[3]  S. Jonjić,et al.  Site-restricted persistent cytomegalovirus infection after selective long-term depletion of CD4+ T lymphocytes , 1989, The Journal of experimental medicine.

[4]  P Rudge,et al.  In vivo cellular tropism of human T-cell leukemia virus type 1 , 1990, Journal of virology.

[5]  Hui Zhu,et al.  Apolipoprotein B mRNA editing is an intranuclear event that occurs posttranscriptionally coincident with splicing and polyadenylation. , 1991, The Journal of biological chemistry.

[6]  C. Burant,et al.  Molecular cloning of an apolipoprotein B messenger RNA editing protein. , 1993, Science.

[7]  R. Espinosa,et al.  Assignment of the gene encoding the human apolipoprotein B mRNA editing enzyme (APOBEC1) to chromosome 12p13.1. , 1994, Genomics.

[8]  S. Wain-Hobson,et al.  Clonal expansion of human T-cell leukemia virus type I-infected cells in asymptomatic and symptomatic carriers without malignancy , 1995, Journal of virology.

[9]  S. Wain-Hobson,et al.  Adult T-cell leukemia/lymphoma on a background of clonally expanding human T-cell leukemia virus type-1-positive cells. , 1996, Blood.

[10]  A. Meyerhans,et al.  HIV genetic variation is directed and restricted by DNA precursor availability. , 1997, Journal of molecular biology.

[11]  Y. Yang,et al.  Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Günther,et al.  Naturally occurring hepatitis B virus genomes bearing the hallmarks of retroviral G-->A hypermutation. , 1997, Virology.

[13]  S. Wain-Hobson,et al.  Persistent oligoclonal expansion of human T-cell leukemia virus type 1-infected circulating cells in patients with Tropical spastic paraparesis/HTLV-1 associated myelopathy , 1998, Oncogene.

[14]  L. Chan,et al.  APOBEC-2, a cardiac- and skeletal muscle-specific member of the cytidine deaminase supergene family. , 1999, Biochemical and biophysical research communications.

[15]  T. Honjo,et al.  Specific Expression of Activation-induced Cytidine Deaminase (AID), a Novel Member of the RNA-editing Deaminase Family in Germinal Center B Cells* , 1999, The Journal of Biological Chemistry.

[16]  R. Bartenschlager,et al.  Replication of hepatitis C virus. , 2000, The Journal of general virology.

[17]  T. Honjo,et al.  Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme , 2000, Cell.

[18]  M. Taniwaki,et al.  Isolation, tissue distribution, and chromosomal localization of the human activation-induced cytidine deaminase (AID) gene. , 2000, Genomics.

[19]  Nicholas O. Davidson,et al.  An AU-Rich Sequence Element (UUUN[A/U]U) Downstream of the Edited C in Apolipoprotein B mRNA Is a High-Affinity Binding Site for Apobec-1: Binding of Apobec-1 to This Motif in the 3′ Untranslated Region of c-myc Increases mRNA Stability , 2000, Molecular and Cellular Biology.

[20]  Bernard Roizman,et al.  Herpes simplex virus infections , 2001, The Lancet.

[21]  S. Anant,et al.  Molecular mechanisms of apolipoprotein B mRNA editing , 2001, Current opinion in lipidology.

[22]  Ding-Shinn Chen,et al.  Global control of hepatitis B virus infection. , 2002, The Lancet. Infectious diseases.

[23]  I. Dunham,et al.  An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. , 2002, Genomics.

[24]  N. Ballatori,et al.  The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. , 2002, Journal of cell science.

[25]  C. Milstein,et al.  AID-GFP chimeric protein increases hypermutation of Ig genes with no evidence of nuclear localization , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Reuben S Harris,et al.  RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. , 2002, Molecular cell.

[27]  M. Malim,et al.  The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif , 2003, Nature Medicine.

[28]  M. Malim,et al.  DNA Deamination Mediates Innate Immunity to Retroviral Infection , 2003, Cell.

[29]  Reuben S Harris,et al.  The Vif Protein of HIV Triggers Degradation of the Human Antiretroviral DNA Deaminase APOBEC3G , 2003, Current Biology.

[30]  F. Clavel,et al.  Hypermutation of HIV-1 DNA in the Absence of the Vif Protein , 2003, Science.

[31]  R. König,et al.  Species-Specific Exclusion of APOBEC3G from HIV-1 Virions by Vif , 2003, Cell.

[32]  M. Khan,et al.  The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity. , 2003 .

[33]  Yunkai Yu,et al.  Induction of APOBEC3G Ubiquitination and Degradation by an HIV-1 Vif-Cul5-SCF Complex , 2003, Science.

[34]  W. Greene,et al.  HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. , 2003, Molecular cell.

[35]  F. Papavasiliou,et al.  AID Mediates Hypermutation by Deaminating Single Stranded DNA , 2003, The Journal of experimental medicine.

[36]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Wedekind,et al.  Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. , 2003, Trends in genetics : TIG.

[38]  B. Cullen,et al.  A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV‐1 and HIV‐2 Vif proteins , 2004, The EMBO journal.

[39]  B. Cullen,et al.  Specific packaging of APOBEC3G into HIV-1 virions is mediated by the nucleocapsid domain of the gag polyprotein precursor. , 2004, Virology.

[40]  D. Pérez-Caballero,et al.  APOBEC3G Incorporation into Human Immunodeficiency Virus Type 1 Particles , 2004, Journal of Virology.

[41]  Reuben S Harris,et al.  Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. , 2004, Journal of molecular biology.

[42]  D. Trono,et al.  Response to Comment on "Inhibition of Hepatitis B Virus Replication by APOBEC3G" , 2004, Science.

[43]  Reiko Shinkura,et al.  Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1 , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Malim,et al.  Cytidine Deamination of Retroviral DNA by Diverse APOBEC Proteins , 2004, Current Biology.

[45]  Amalio Telenti,et al.  APOBEC3G Genetic Variants and Their Influence on the Progression to AIDS , 2004, Journal of Virology.

[46]  B. Strack,et al.  Vif Overcomes the Innate Antiviral Activity of APOBEC3G by Promoting Its Degradation in the Ubiquitin-Proteasome Pathway* , 2004, Journal of Biological Chemistry.

[47]  Xianghui Yu,et al.  Amino-Terminal Region of the Human Immunodeficiency Virus Type 1 Nucleocapsid Is Required for Human APOBEC3G Packaging , 2004, Journal of Virology.

[48]  E. Decroly,et al.  HIV-1 and MLV Gag proteins are sufficient to recruit APOBEC3G into virus-like particles. , 2004, Biochemical and biophysical research communications.

[49]  L. Kleiman,et al.  The Interaction between HIV-1 Gag and APOBEC3G* , 2004, Journal of Biological Chemistry.

[50]  M. Watson,et al.  Activation-induced Cytosine Deaminase (AID) Is Actively Exported out of the Nucleus but Retained by the Induction of DNA Breaks* , 2004, Journal of Biological Chemistry.

[51]  M. Malim,et al.  APOBEC-Mediated Editing of Viral RNA , 2004, Science.

[52]  T. Alce,et al.  APOBEC3G Is Incorporated into Virus-like Particles by a Direct Interaction with HIV-1 Gag Nucleocapsid Protein* , 2004, Journal of Biological Chemistry.

[53]  W. Brown,et al.  APOBEC3F Properties and Hypermutation Preferences Indicate Activity against HIV-1 In Vivo , 2004, Current Biology.

[54]  V. Pathak,et al.  Human Apolipoprotein B mRNA-editing Enzyme-catalytic Polypeptide-like 3G (APOBEC3G) Is Incorporated into HIV-1 Virions through Interactions with Viral and Nonviral RNAs* , 2004, Journal of Biological Chemistry.

[55]  Reuben S. Harris,et al.  Retroviral restriction by APOBEC proteins , 2004, Nature Reviews Immunology.

[56]  R. König,et al.  APOBEC3B and APOBEC3C Are Potent Inhibitors of Simian Immunodeficiency Virus Replication* , 2004, Journal of Biological Chemistry.

[57]  Vasco M. Barreto,et al.  Somatic Hypermutation Is Limited by CRM1-dependent Nuclear Export of Activation-induced Deaminase , 2004, The Journal of experimental medicine.

[58]  M. Malim,et al.  Antiviral Function of APOBEC3G Can Be Dissociated from Cytidine Deaminase Activity , 2005, Current Biology.

[59]  R. König,et al.  Complementary function of the two catalytic domains of APOBEC3G. , 2005, Virology.

[60]  D. Nissley,et al.  APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Samantha G. Zeitlin,et al.  Human Immunodeficiency Virus Type 1 Vpr Induces the Degradation of the UNG and SMUG Uracil-DNA Glycosylases , 2005, Journal of Virology.

[62]  S. Heath,et al.  Exhaustive genotyping of the CEM15 (APOBEC3G) gene and absence of association with AIDS progression in a French cohort. , 2005, The Journal of infectious diseases.

[63]  S. Wain-Hobson,et al.  Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases. , 2005, The Journal of general virology.

[64]  S. Wain-Hobson,et al.  Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[65]  E. Koonin,et al.  APOBEC4, a New Member of the AID/APOBEC Family of Polynucleotide (Deoxy)Cytidine Deaminases Predicted by Computational Analysis , 2005, Cell cycle.

[66]  R. Reichman Herpes simplex virus infections , 1984, European Journal of Clinical Microbiology.

[67]  R. Reichman,et al.  APOBEC3G/CEM15 (hA3G) mRNA Levels Associate Inversely with Human Immunodeficiency Virus Viremia , 2005, Journal of Virology.

[68]  B. Cullen,et al.  Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. , 2005, Virology.

[69]  Amane Sasada,et al.  APOBEC3G targets human T-cell leukemia virus type 1 , 2005, Retrovirology.

[70]  M. Neuberger,et al.  Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. , 2005, Molecular biology and evolution.

[71]  T. Heidmann,et al.  APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses , 2005, Nature.

[72]  M. Malim,et al.  APOBEC‐mediated interference with hepadnavirus production , 2005, Hepatology.

[73]  W. Greene,et al.  Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells , 2005, Nature.

[74]  M. Marin,et al.  The Anti-HIV-1 Editing Enzyme APOBEC3G Binds HIV-1 RNA and Messenger RNAs That Shuttle between Polysomes and Stress Granules* , 2006, Journal of Biological Chemistry.

[75]  N. Davidson,et al.  APOBEC3F and APOBEC3G mRNA Levels Do Not Correlate with Human Immunodeficiency Virus Type 1 Plasma Viremia or CD4+ T-Cell Count , 2006, Journal of Virology.

[76]  M. Alary,et al.  APOBEC3G genetic variants and their association with risk of HIV infection in highly exposed Caucasians , 2006, AIDS.

[77]  B. Cullen,et al.  APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells , 2006, Nucleic acids research.

[78]  W. J. Esselman,et al.  Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family , 2006, Journal of Virology.

[79]  C. Moore,et al.  Population Level Analysis of Human Immunodeficiency Virus Type 1 Hypermutation and Its Relationship with APOBEC3G and vif Genetic Variation , 2006, Journal of Virology.

[80]  Amane Sasada,et al.  Ubiquitination of APOBEC3 proteins by the Vif-Cullin5-ElonginB-ElonginC complex. , 2006, Virology.

[81]  M. Malim,et al.  Antiviral Protein APOBEC3G Localizes to Ribonucleoprotein Complexes Found in P Bodies and Stress Granules , 2006, Journal of Virology.

[82]  H. Seno,et al.  Anti-viral protein APOBEC3G is induced by interferon-α stimulation in human hepatocytes , 2006 .

[83]  S. Wain-Hobson,et al.  Interferon‐inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication , 2006, Hepatology.

[84]  M. Emerman,et al.  Uracil DNA Glycosylase Is Dispensable for Human Immunodeficiency Virus Type 1 Replication and Does Not Contribute to the Antiviral Effects of the Cytidine Deaminase Apobec3G , 2006, Journal of Virology.

[85]  K. Shimotohno,et al.  High expression of APOBEC3G in patients infected with hepatitis C virus , 2006, Journal of Molecular Histology.

[86]  W. Greene,et al.  Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation , 2006, The Journal of experimental medicine.

[87]  J. Wedekind,et al.  Nanostructures of APOBEC3G Support a Hierarchical Assembly Model of High Molecular Mass Ribonucleoprotein Particles from Dimeric Subunits* , 2006, Journal of Biological Chemistry.

[88]  T. Heidmann,et al.  Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses , 2006, Nucleic acids research.

[89]  S. Calattini,et al.  Restriction of Foamy Viruses by APOBEC Cytidine Deaminases , 2006, Journal of Virology.

[90]  J. V. Moran,et al.  Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[91]  W. Greene,et al.  High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition , 2006, Proceedings of the National Academy of Sciences.

[92]  M. Levrero Viral hepatitis and liver cancer: the case of hepatitis C , 2006, Oncogene.

[93]  N. Muñoz,et al.  HPV in the etiology of human cancer , 2006 .

[94]  R. Medzhitov,et al.  Type I interferons in host defense. , 2006, Immunity.

[95]  T. Rana,et al.  Human Retroviral Host Restriction Factors APOBEC3G and APOBEC3F Localize to mRNA Processing Bodies , 2006, PLoS pathogens.

[96]  L. Kleiman,et al.  Inhibition of tRNA₃(Lys)-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. , 2006, Journal of virology.

[97]  C. Tian,et al.  Differential Inhibition of Long Interspersed Element 1 by APOBEC3 Does Not Correlate with High-Molecular-Mass-Complex Formation or P-Body Association , 2006, Journal of Virology.

[98]  M. Malim,et al.  Antiviral Potency of APOBEC Proteins Does Not Correlate with Cytidine Deamination , 2006, Journal of Virology.

[99]  D. Trono,et al.  Induction of Antiviral Cytidine Deaminases Does Not Explain the Inhibition of Hepatitis B Virus Replication by Interferons , 2007, Journal of Virology.

[100]  Jianming Hu,et al.  Deamination-Independent Inhibition of Hepatitis B Virus Reverse Transcription by APOBEC3G , 2007, Journal of Virology.

[101]  W. Greene,et al.  Distinct Patterns of Cytokine Regulation of APOBEC3G Expression and Activity in Primary Lymphocytes, Macrophages, and Dendritic Cells* , 2006, Journal of Biological Chemistry.

[102]  M. Imamura,et al.  Dual effect of APOBEC3G on Hepatitis B virus. , 2007, The Journal of general virology.

[103]  W. Greene,et al.  Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H , 2007, PLoS pathogens.

[104]  G. Heidecker,et al.  Resistance of human T cell leukemia virus type 1 to APOBEC3G restriction is mediated by elements in nucleocapsid , 2007, Proceedings of the National Academy of Sciences.

[105]  L. Kleiman,et al.  APOBEC3G Inhibits DNA Strand Transfer during HIV-1 Reverse Transcription* , 2007, Journal of Biological Chemistry.

[106]  W. Greene,et al.  The CD16+ Monocyte Subset Is More Permissive to Infection and Preferentially Harbors HIV-1 In Vivo1 , 2007, The Journal of Immunology.

[107]  Shu Zheng,et al.  Association of human APOBEC3 cytidine deaminases with the generation of hepatitis virus B x antigen mutants and hepatocellular carcinoma , 2007, Hepatology.

[108]  M. Neuberger,et al.  Molecular mechanisms of antibody somatic hypermutation. , 2007, Annual review of biochemistry.

[109]  M. Khan,et al.  Human Immunodeficiency Virus Type 1 Vif Inhibits Packaging and Antiviral Activity of a Degradation-Resistant APOBEC3G Variant , 2007, Journal of Virology.

[110]  Patrick T. Dolan,et al.  Biochemical Differentiation of APOBEC3F and APOBEC3G Proteins Associated with HIV-1 Life Cycle* , 2007, Journal of Biological Chemistry.

[111]  M. Malim,et al.  Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C , 2007, Hepatology.

[112]  A. Engelman,et al.  Human Immunodeficiency Virus Type 1 cDNAs Produced in the Presence of APOBEC3G Exhibit Defects in Plus-Strand DNA Transfer and Integration , 2007, Journal of Virology.

[113]  L. Lopalco,et al.  Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G: a possible role in the resistance to HIV of HIV-exposed seronegative individuals. , 2007, The Journal of infectious diseases.

[114]  J. V. Moran,et al.  Selective inhibition of Alu retrotransposition by APOBEC3G. , 2007, Gene.

[115]  E. Eichler,et al.  Population Stratification of a Common APOBEC Gene Deletion Polymorphism , 2007, PLoS genetics.

[116]  Robert M Grant,et al.  Target Cell APOBEC3C Can Induce Limited G-to-A Mutation in HIV-1 , 2007, PLoS pathogens.

[117]  M. Shimura,et al.  All APOBEC3 family proteins differentially inhibit LINE-1 retrotransposition , 2007, Nucleic acids research.

[118]  Kuan-Teh Jeang,et al.  Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation , 2007, Nature Reviews Cancer.

[119]  Y. Xiong,et al.  Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[120]  Darius Moradpour,et al.  Replication of hepatitis C virus , 2007, Nature Reviews Microbiology.

[121]  Keyang Chen,et al.  Virion-associated Uracil DNA Glycosylase-2 and Apurinic/Apyrimidinic Endonuclease Are Involved in the Degradation of APOBEC3G-edited Nascent HIV-1 DNA* , 2007, Journal of Biological Chemistry.

[122]  A. Gronenborn,et al.  Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G , 2007, Nucleic acids research.

[123]  S. Pillai,et al.  Turning up the volume on mutational pressure: Is more of a good thing always better? (A case study of HIV-1 Vif and APOBEC3) , 2008, Retrovirology.

[124]  J. Kappes,et al.  Cytidine Deaminases APOBEC3G and APOBEC3F Interact with Human Immunodeficiency Virus Type 1 Integrase and Inhibit Proviral DNA Formation , 2007, Journal of Virology.

[125]  G. Schumann APOBEC3 proteins: major players in intracellular defence against LINE-1-mediated retrotransposition. , 2007, Biochemical Society transactions.

[126]  P. Spearman,et al.  APOBEC3G Multimers Are Recruited to the Plasma Membrane for Packaging into Human Immunodeficiency Virus Type 1 Virus-Like Particles in an RNA-Dependent Process Requiring the NC Basic Linker , 2007, Journal of Virology.

[127]  M. Malim,et al.  APOBEC3F Can Inhibit the Accumulation of HIV-1 Reverse Transcription Products in the Absence of Hypermutation , 2007, Journal of Biological Chemistry.

[128]  K. Shindo,et al.  Evolution of HIV-1 Isolates that Use a Novel Vif-Independent Mechanism to Resist Restriction by Human APOBEC3G , 2008, Current Biology.

[129]  S. Wain-Hobson,et al.  Evidence for Editing of Human Papillomavirus DNA by APOBEC3 in Benign and Precancerous Lesions , 2008, Science.

[130]  S. O’Brien,et al.  Functions, structure, and read-through alternative splicing of feline APOBEC3 genes , 2008, Genome Biology.

[131]  N. Navaratnam,et al.  APOBEC and iNOS are not the main intracellular effectors of IFN-gamma-mediated inactivation of Hepatitis B virus replication. , 2008, Antiviral research.

[132]  Timothy P. L. Smith,et al.  The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals , 2008, BMC Molecular Biology.

[133]  John J. Welch,et al.  Conserved Footprints of APOBEC3G on Hypermutated Human Immunodeficiency Virus Type 1 and Human Endogenous Retrovirus HERV-K(HML2) Sequences , 2008, Journal of Virology.

[134]  Ariana Harari,et al.  Polymorphisms and Splice Variants Influence the Antiretroviral Activity of Human APOBEC3H , 2008, Journal of Virology.

[135]  M. Malim,et al.  Comparison of Cellular Ribonucleoprotein Complexes Associated with the APOBEC3F and APOBEC3G Antiviral Proteins , 2008, Journal of Virology.

[136]  M. Neuberger,et al.  Human APOBEC3G Can Restrict Retroviral Infection in Avian Cells and Acts Independently of both UNG and SMUG1 , 2008, Journal of Virology.

[137]  H. Blum,et al.  Hypermutation of hepatitis B virus genomes by APOBEC3G, APOBEC3C and APOBEC3H. , 2008, The Journal of general virology.

[138]  Wei Zhang,et al.  Cytidine deaminase APOBEC3B interacts with heterogeneous nuclear ribonucleoprotein K and suppresses hepatitis B virus expression , 2007, Cellular microbiology.

[139]  M. Malim,et al.  APOBEC3G Inhibits Elongation of HIV-1 Reverse Transcripts , 2008, PLoS pathogens.

[140]  A. Gewirtzman,et al.  Mucocutaneous Manifestations of Epstein-Barr Virus Infection , 2008, American journal of clinical dermatology.

[141]  J. Wedekind,et al.  Nuclear Exclusion of the HIV-1 Host Defense Factor APOBEC3G Requires a Novel Cytoplasmic Retention Signal and Is Not Dependent on RNA Binding* , 2008, Journal of Biological Chemistry.

[142]  Hong Cao,et al.  Small-molecule inhibition of HIV-1 Vif , 2008, Nature Biotechnology.

[143]  S. Matsushita,et al.  The antiretroviral potency of APOBEC1 deaminase from small animal species , 2008, Nucleic acids research.

[144]  Xiaojun Wang,et al.  Human Cytidine Deaminase APOBEC3H Restricts HIV-1 Replication* , 2008, Journal of Biological Chemistry.

[145]  G. Reyes-Terán,et al.  APOBEC3G mRNA expression in exposed seronegative and early stage HIV infected individuals decreases with removal of exposure and with disease progression , 2009, Retrovirology.

[146]  S. Mboup,et al.  The level of APOBEC3G (hA3G)-related G-to-A mutations does not correlate with viral load in HIV type 1-infected individuals. , 2008, AIDS research and human retroviruses.

[147]  C. Tian,et al.  Distinct viral determinants for the packaging of human cytidine deaminases APOBEC3G and APOBEC3C. , 2008, Virology.

[148]  M. Emerman,et al.  Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. , 2008, Cell host & microbe.

[149]  Ma Luo,et al.  Human Immunodeficiency Virus (HIV) Type 1 Proviral Hypermutation Correlates with CD4 Count in HIV-Infected Women from Kenya , 2008, Journal of Virology.

[150]  J. Sankalé,et al.  Relationship between human immunodeficiency type 1 infection and expression of human APOBEC3G and APOBEC3F. , 2008, The Journal of infectious diseases.

[151]  A. Rathore,et al.  Absence of H186R polymorphism in exon 4 of the APOBEC3G gene among North Indian individuals. , 2008, Genetic testing.

[152]  W. Greene,et al.  The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. , 2008, Annual review of immunology.

[153]  T. Hope,et al.  APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells. , 2008, Virology.

[154]  Ariana Harari,et al.  Cytidine deamination induced HIV-1 drug resistance , 2008, Proceedings of the National Academy of Sciences.

[155]  Bette Korber,et al.  HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC , 2009, PLoS pathogens.

[156]  D. Trono,et al.  APOBEC3G-Depleted Resting CD4+ T Cells Remain Refractory to HIV1 Infection , 2009, PloS one.

[157]  C. Tian,et al.  Sole copy of Z2‐type human cytidine deaminase APOBEC3H has inhibitory activity against retrotransposons and HIV‐1. , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[158]  Osamu Takeuchi,et al.  Innate immunity to virus infection , 2009, Immunological reviews.

[159]  Yusuke Nakamura,et al.  Effects of structural variations of APOBEC3A and APOBEC3B genes in chronic hepatitis B virus infection , 2009, Hepatology research : the official journal of the Japan Society of Hepatology.

[160]  R. Harris,et al.  AID can restrict L1 retrotransposition suggesting a dual role in innate and adaptive immunity , 2009, Nucleic acids research.

[161]  J. Hultquist,et al.  Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. , 2009, Future virology.

[162]  S. Wain-Hobson,et al.  Genetic Editing of HBV DNA by Monodomain Human APOBEC3 Cytidine Deaminases and the Recombinant Nature of APOBEC3G , 2009, PloS one.

[163]  M. Khan,et al.  Encapsidation of APOBEC3G into HIV-1 virions involves lipid raft association and does not correlate with APOBEC3G oligomerization , 2009, Retrovirology.

[164]  J. Goedert,et al.  APOBEC3B deletion and risk of HIV-1 acquisition. , 2009, The Journal of infectious diseases.

[165]  M. Neuberger,et al.  Deficiency in APOBEC2 Leads to a Shift in Muscle Fiber Type, Diminished Body Mass, and Myopathy , 2009, The Journal of Biological Chemistry.

[166]  V. Pathak,et al.  Likely Role of APOBEC3G-Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance , 2009, PLoS pathogens.

[167]  Aijaz Ahmed,et al.  Ultra-deep pyrosequencing of hepatitis B virus quasispecies from nucleoside and nucleotide reverse-transcriptase inhibitor (NRTI)-treated patients and NRTI-naive patients. , 2009, The Journal of infectious diseases.

[168]  M. Sitbon,et al.  Murine APOBEC1 is a powerful mutator of retroviral and cellular RNA in vitro and in vivo. , 2009, Journal of molecular biology.

[169]  R. McClelland,et al.  Analysis of the Percentage of Human Immunodeficiency Virus Type 1 Sequences That Are Hypermutated and Markers of Disease Progression in a Longitudinal Cohort, Including One Individual with a Partially Defective Vif , 2009, Journal of Virology.

[170]  J. Levy HIV pathogenesis: 25 years of progress and persistent challenges , 2009, AIDS.

[171]  M. Kamata,et al.  Reassessing the Role of APOBEC3G in Human Immunodeficiency Virus Type 1 Infection of Quiescent CD4+ T-Cells , 2009, PLoS pathogens.

[172]  S. Wain-Hobson,et al.  Human APOBEC1 cytidine deaminase edits HBV DNA , 2009, Retrovirology.

[173]  Y. Kamatani,et al.  A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians , 2009, Nature Genetics.

[174]  Y. Kawaguchi,et al.  APOBEC1-Mediated Editing and Attenuation of Herpes Simplex Virus 1 DNA Indicate That Neurons Have an Antiviral Role during Herpes Simplex Encephalitis , 2010, Journal of Virology.

[175]  John S. Albin,et al.  Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics , 2010, Expert Reviews in Molecular Medicine.

[176]  T. Ndung’u,et al.  APOBEC3G expression is dysregulated in primary HIV-1 infection and polymorphic variants influence CD4+ T-cell counts and plasma viral load , 2010, AIDS.

[177]  S. Bernacchi,et al.  HIV-1 Vif binds to APOBEC3G mRNA and inhibits its translation , 2009, Nucleic acids research.

[178]  C. Winkler,et al.  Host genes associated with HIV/AIDS: advances in gene discovery. , 2010, Trends in genetics : TIG.

[179]  O. Schwartz,et al.  The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells , 2010, The Journal of experimental medicine.

[180]  V. Mazzaferro,et al.  Massive APOBEC3 Editing of Hepatitis B Viral DNA in Cirrhosis , 2010, PLoS pathogens.

[181]  Quan Zhang,et al.  The cellular source for APOBEC3G's incorporation into HIV-1 , 2011, Retrovirology.

[182]  P. Green,et al.  Human T Lymphotropic Virus Type 1 (HTLV-1): Molecular Biology and Oncogenesis , 2010, Viruses.

[183]  M. Malim,et al.  Human APOBEC3G-Mediated Editing Can Promote HIV-1 Sequence Diversification and Accelerate Adaptation to Selective Pressure , 2010, Journal of Virology.

[184]  The Associations of hA3G and hA3B mRNA Levels With HIV Disease Progression Among HIV-Infected Individuals of China , 2010, Journal of acquired immune deficiency syndromes.

[185]  Ariana Harari,et al.  Moderate Influence of Human APOBEC3F on HIV-1 Replication in Primary Lymphocytes , 2010, Journal of Virology.

[186]  M. Matsuoka,et al.  APOBEC3G Generates Nonsense Mutations in Human T-Cell Leukemia Virus Type 1 Proviral Genomes In Vivo , 2010, Journal of Virology.

[187]  Jian-Dong Jiang,et al.  Small Molecular Compounds Inhibit HIV-1 Replication through Specifically Stabilizing APOBEC3G* , 2010, The Journal of Biological Chemistry.

[188]  W. Brown,et al.  Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction , 2010, Nucleic acids research.

[189]  M. Pellegrini,et al.  Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency , 2010, Nature.

[190]  T. Nakajima,et al.  No evidence of an association between the APOBEC3B deletion polymorphism and susceptibility to HIV infection and AIDS in Japanese and Indian populations. , 2010, The Journal of infectious diseases.

[191]  M. Stenglein,et al.  APOBEC3 proteins mediate the clearance of foreign DNA from human cells , 2010, Nature Structural &Molecular Biology.

[192]  V. Pathak,et al.  APOBEC3F and APOBEC3G Inhibit HIV-1 DNA Integration by Different Mechanisms , 2010, Journal of Virology.

[193]  L. M. Mansky,et al.  APOBEC3G Contributes to HIV-1 Variation through Sublethal Mutagenesis , 2010, Journal of Virology.

[194]  Fuchu He,et al.  Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers , 2010, Nature Genetics.

[195]  Helen M. Blau,et al.  Reprogramming towards pluripotency requires AID-dependent DNA demethylation , 2010, Nature.

[196]  A. Mangano,et al.  Effect of HIV-1 Vif variability on progression to pediatric AIDS and its association with APOBEC3G and CUL5 polymorphisms. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[197]  M. Emerman,et al.  Polymorphism in Human APOBEC3H Affects a Phenotype Dominant for Subcellular Localization and Antiviral Activity , 2011, Journal of Virology.

[198]  C. Wachihi,et al.  The role of G protein gene GNB3 C825T Polymorphism in HIV-1 acquisition, progression and immune activation , 2012, Retrovirology.

[199]  V. I. Mayorov,et al.  Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast , 2011, Biochemistry (Moscow).

[200]  C. Chisholm,et al.  Cutaneous infections caused by Herpesviridae: a review. , 2011, Archives of pathology & laboratory medicine.

[201]  T. Mizukami,et al.  An anti-HIV-1 compound that increases steady-state expression of apoplipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G. , 2011, International journal of molecular medicine.

[202]  N. Bresolin,et al.  A POSITIVELY SELECTED APOBEC3H HAPLOTYPE IS ASSOCIATED WITH NATURAL RESISTANCE TO HIV‐1 INFECTION , 2011, Evolution; international journal of organic evolution.

[203]  A. Meyerhans,et al.  Genetic Editing of Herpes Simplex Virus 1 and Epstein-Barr Herpesvirus Genomes by Human APOBEC3 Cytidine Deaminases in Culture and In Vivo , 2011, Journal of Virology.

[204]  M. Soares,et al.  Expression of APOBEC3G/3F and G-to-A Hypermutation Levels in HIV-1-Infected Children with Different Profiles of Disease Progression , 2011, PloS one.

[205]  Xiaojun Wang,et al.  Analysis of Human APOBEC3H Haplotypes and Anti-Human Immunodeficiency Virus Type 1 Activity , 2011, Journal of Virology.

[206]  E. Kurt-Jones,et al.  Pattern Recognition Receptors and the Innate Immune Response to Viral Infection , 2011, Viruses.

[207]  Rocío Aller,et al.  Perfiles de expresión génica en las primeras doce semanas de tratamiento en pacientes con hepatitis C crónica , 2011 .

[208]  F. Hecht,et al.  APOBEC3H haplotypes and HIV-1 pro-viral vif DNA sequence diversity in early untreated human immunodeficiency virus-1 infection. , 2011, Human immunology.

[209]  [Gene expression profiling in the first twelve weeks of treatment in chronic hepatitis C patients]. , 2011, Enfermedades infecciosas y microbiologia clinica.

[210]  K. Shianna,et al.  Genomewide Association Study for Determinants of HIV-1 Acquisition and Viral Set Point in HIV-1 Serodiscordant Couples with Quantified Virus Exposure , 2011, PloS one.

[211]  Jian-Dong Jiang,et al.  Host apolipoprotein b messenger RNA‐editing enzyme catalytic polypeptide‐like 3G is an innate defensive factor and drug target against hepatitis C virus , 2011, Hepatology.

[212]  M. D. Di Bari,et al.  Assessment of the Genetic Susceptibility of Sheep to Scrapie by Protein Misfolding Cyclic Amplification and Comparison with Experimental Scrapie Transmission Studies , 2011, Journal of Virology.

[213]  K. Collins,et al.  The antiviral factor APOBEC3G enhances the recognition of HIV-infected primary T cells by natural killer cells , 2011, Nature Immunology.

[214]  P. Pineau,et al.  Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism , 2011, Proceedings of the National Academy of Sciences.

[215]  A. Chicca,et al.  Analysis of reptilian APOBEC1 suggests that RNA editing may not be its ancestral function. , 2011, Molecular biology and evolution.

[216]  T. Heidmann,et al.  Intrinsic restriction activity by apolipoprotein B mRNA editing enzyme APOBEC1 against the mobility of autonomous retrotransposons , 2011, Nucleic acids research.

[217]  R. Diaz,et al.  Loci polymorphisms of the APOBEC3G gene in HIV type 1-infected Brazilians. , 2011, AIDS research and human retroviruses.

[218]  G. Ming,et al.  Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain , 2011, Cell.

[219]  Michael M. Mwangi,et al.  Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA editing targets in transcript 3′ UTRs , 2010, Nature Structural &Molecular Biology.

[220]  Lela Lackey,et al.  APOBEC3B and AID have similar nuclear import mechanisms. , 2012, Journal of molecular biology.

[221]  S. Conticello Creative deaminases, self‐inflicted damage, and genome evolution , 2012, Annals of the New York Academy of Sciences.

[222]  Hongbing Shen,et al.  GWAS Identifies Novel Susceptibility Loci on 6p21.32 and 21q21.3 for Hepatocellular Carcinoma in Chronic Hepatitis B Virus Carriers , 2012, PLoS genetics.

[223]  A. Iwasaki A virological view of innate immune recognition. , 2012, Annual review of microbiology.

[224]  M. Malim,et al.  HIV-1 Replication and APOBEC3 Antiviral Activity Are Not Regulated by P Bodies , 2012, Journal of Virology.

[225]  M. Malim,et al.  Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4+ T Cells Is Associated with Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination , 2012, Journal of Virology.

[226]  M. Wabl,et al.  LINE-1 Retroelements Complexed and Inhibited by Activation Induced Cytidine Deaminase , 2012, PloS one.

[227]  G. Kobinger,et al.  The Cellular Antiviral Protein APOBEC3G Interacts with HIV-1 Reverse Transcriptase and Inhibits Its Function during Viral Replication , 2012, Journal of Virology.

[228]  V. Pathak,et al.  APOBEC3G Restricts HIV-1 to a Greater Extent than APOBEC3F and APOBEC3DE in Human Primary CD4+ T Cells and Macrophages , 2012, Journal of Virology.

[229]  A. Mangano,et al.  APOBEC3-mediated editing in HIV type 1 from pediatric patients and its association with APOBEC3G/CUL5 polymorphisms and Vif variability. , 2012, AIDS research and human retroviruses.

[230]  V. Simon,et al.  APOBEC3A, APOBEC3B, and APOBEC3H Haplotype 2 Restrict Human T-Lymphotropic Virus Type 1 , 2012, Journal of Virology.

[231]  V. Calvez,et al.  E138K and M184I mutations in HIV-1 reverse transcriptase coemerge as a result of APOBEC3 editing in the absence of drug exposure , 2012, AIDS.

[232]  Andrew D. Johnson,et al.  A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation , 2012, PLoS genetics.

[233]  N. Krogan,et al.  First-in-class small molecule inhibitors of the single-strand DNA cytosine deaminase APOBEC3G. , 2012, ACS chemical biology.

[234]  HaroldC. Smith,et al.  Functions and regulation of the APOBEC family of proteins. , 2012, Seminars in cell & developmental biology.

[235]  R. D’Aquila,et al.  APOBEC3G expression and hypermutation are inversely associated with human immunodeficiency virus type 1 (HIV-1) burden in vivo. , 2012, Virology.

[236]  C. Münk,et al.  An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals , 2012, BMC Evolutionary Biology.

[237]  Hanneke Schuitemaker,et al.  Genome-wide association studies on HIV susceptibility, pathogenesis and pharmacogenomics , 2012, Retrovirology.

[238]  D. Häussinger,et al.  Running Loose or Getting Lost: How HIV-1 Counters and Capitalizes on APOBEC3-Induced Mutagenesis through Its Vif Protein , 2012, Viruses.

[239]  J. Fellay,et al.  Role of retroviral restriction factors in the interferon-α–mediated suppression of HIV-1 in vivo , 2012, Proceedings of the National Academy of Sciences.

[240]  Paul D. Cotter,et al.  Nucleic acid-based approaches to investigate microbial-related cheese quality defects , 2012, Front. Microbio..

[241]  Ming Li,et al.  Small‐Molecule APOBEC3G DNA Cytosine Deaminase Inhibitors Based on a 4‐Amino‐1,2,4‐triazole‐3‐thiol Scaffold , 2013, ChemMedChem.

[242]  P. Pineau,et al.  Polymorphic APOBEC3 modulates chronic hepatitis B in Moroccan population , 2013, Journal of viral hepatitis.

[243]  S. Spector,et al.  Genetic Variants in the Host Restriction Factor APOBEC3G are Associated With HIV-1–Related Disease Progression and Central Nervous System Impairment in Children , 2013, Journal of acquired immune deficiency syndromes.

[244]  Terumasa Ikeda,et al.  Intrinsic immunity against retrotransposons by APOBEC cytidine deaminases , 2013, Front. Microbio..

[245]  N. A. Temiz,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[246]  Lela Lackey,et al.  Endogenous APOBEC3A DNA Cytosine Deaminase Is Cytoplasmic and Nongenotoxic* , 2013, The Journal of Biological Chemistry.

[247]  W. Tan,et al.  Evidence of associations of APOBEC3B gene deletion with susceptibility to persistent HBV infection and hepatocellular carcinoma. , 2013, Human molecular genetics.