Vibration frequency of graphene based composites: A multiscale approach

Abstract This paper presents a multiscale approach for vibration frequency analysis of graphene/polymer composites. The graphene is modelled at the atomistic scale, and the matrix deformation is analysed by the continuum finite element method. Inter-connectivity between graphene and polymer matrix are assumed to be bonded by van der Waals interactions at the interface. The impact of geometrical configuration (armchair and zigzag), boundary conditions and length on the overall stiffness of the graphene reinforced plastics (GRP) is studied. The natural frequency and vibrational mode shapes of GRP studied have displayed dependence on the length and also the boundary conditions. The exceptional vibrational behaviour and large stiffness displayed by GRP makes them a potential replacement for conventional composite fibres such as carbon and glass fibres.

[1]  J. Tsai,et al.  Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics , 2009 .

[2]  Wei Chen,et al.  Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum , 2010 .

[3]  S. Adhikari,et al.  Graphene-based biosensor using transport properties , 2011 .

[4]  Yan Wang,et al.  Electromagnetic interference shielding of graphene/epoxy composites , 2009 .

[5]  Peter W. Chung,et al.  On a formulation for a multiscale atomistic-continuum homogenization method , 2003 .

[6]  R. Ruoff,et al.  Graphene-based polymer nanocomposites , 2011 .

[7]  G. N. Labeas,et al.  Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites , 2008 .

[8]  R. Naghdabadi,et al.  Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium , 2005 .

[9]  R. Batra,et al.  Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets , 2010 .

[10]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .

[11]  G. Dilecce,et al.  N 2 とO 2 によるN 2 + (B 2 Σ u + ,ν=0)の衝突消光と窒素スペクトル帯の強度比によるE/N測定に及ぼす影響 , 2010 .

[12]  N. Koratkar,et al.  Fracture and fatigue in graphene nanocomposites. , 2010, Small.

[13]  S. Adhikari,et al.  Vibration spectra of fullerene family , 2011 .

[14]  Y. Gan,et al.  STM investigation on interaction between superstructure and grain boundary in graphite , 2003 .

[15]  Ted Belytschko,et al.  A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids , 2007 .

[16]  S. Adhikari,et al.  Thickness and in-plane elasticity of Graphane , 2011 .

[17]  R. Naghdabadi,et al.  Multiscale Nonlinear Constitutive Modeling of Carbon Nanostructures Based on Interatomic Potentials , 2009 .

[18]  Boris I. Yakobson,et al.  C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .

[19]  Shaker A. Meguid,et al.  Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes , 2010 .

[20]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[21]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[22]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[23]  T. Kaneko On Timoshenko's correction for shear in vibrating beams , 1975 .

[24]  S. Adhikari,et al.  A mechanical equivalence for Poisson's ratio and thickness of C–C bonds in single wall carbon nanotubes , 2008 .

[25]  Prithu Mukhopadhyay,et al.  Trends and Frontiers in Graphene-Based Polymer Nanocomposites , 2011 .

[26]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[27]  Paraskevas Papanikos,et al.  Finite element modeling of single-walled carbon nanotubes , 2005 .

[28]  R. Mülhaupt,et al.  Graphene Nanocomposites Prepared From Blends of Polymer Latex with Chemically Reduced Graphite Oxide Dispersions , 2010 .

[29]  Rasoul Khandan,et al.  A method for developing the equivalent continuum model of a single layer graphene sheet , 2008 .

[30]  G. B. Warburton,et al.  The Vibration of Rectangular Plates , 1954 .

[31]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[32]  Ji-Beom Yoo,et al.  A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. , 2010, Journal of colloid and interface science.

[33]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[34]  Chengyuan Wang,et al.  A molecular mechanics approach for the vibration of single-walled carbon nanotubes , 2010 .

[35]  Zhong-Zhen Yu,et al.  Buckling resistant graphene nanocomposites , 2009 .

[36]  Fabrizio Scarpa,et al.  Transverse vibration of single-layer graphene sheets , 2011 .

[37]  Lei Gong,et al.  Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite , 2010, Advanced materials.

[38]  Roham Rafiee,et al.  On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region , 2010 .

[39]  D. J. Gorman,et al.  Free Vibration Analysis of Rectangular Plates , 1982 .

[40]  Ted Belytschko,et al.  Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .

[41]  A. Masud,et al.  A multiscale framework for computational nanomechanics: Application to the modeling of carbon nanotubes , 2009 .

[42]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[43]  Erica L. Corral,et al.  Toughening in graphene ceramic composites. , 2011, ACS nano.

[44]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[45]  Tsu-Wei Chou,et al.  Multiscale modeling of compressive behavior of carbon nanotube/polymer composites , 2006 .

[46]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[47]  N. Koratkar,et al.  Graphene nanoribbon composites. , 2010, ACS nano.

[48]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .

[49]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[50]  T. Murmu,et al.  Nonlocal vibration of bonded double-nanoplate-systems , 2011 .

[51]  Ted Belytschko,et al.  Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes , 2008 .

[52]  W. Soedel Vibrations of shells and plates , 1981 .

[53]  R. Naghdabadi,et al.  Nonlinear vibrational analysis of single-layer graphene sheets , 2010, Nanotechnology.

[54]  Zhong-Zhen Yu,et al.  Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding , 2010 .

[55]  Yan Wang,et al.  Infrared-Triggered Actuators from Graphene-Based Nanocomposites , 2009 .

[56]  R. Rafiee,et al.  A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites , 2010 .

[57]  M. Roukes,et al.  Parametric nanomechanical amplification at very high frequency. , 2009, Nano letters.

[58]  S. Adhikari,et al.  The calibration of carbon nanotube based bionanosensors , 2010 .

[59]  S. Adhikari,et al.  Effective elastic mechanical properties of single layer graphene sheets , 2009, Nanotechnology.

[60]  S. K. Georgantzinos,et al.  Size-dependent non-linear mechanical properties of graphene nanoribbons , 2011 .

[61]  R. Verdejo,et al.  Graphene filled polymer nanocomposites , 2011 .

[62]  Ted Belytschko,et al.  Bridging domain methods for coupled atomistic–continuum models with L2 or H1 couplings , 2009 .

[63]  M. Shokrieh,et al.  Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach , 2010 .

[64]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[65]  Ken Kuang,et al.  Fuel Cell Electronics Packaging , 2007 .

[66]  F. Scarpa,et al.  Vibrational characteristics of bilayer graphene sheets , 2011 .