Vibration frequency of graphene based composites: A multiscale approach
暂无分享,去创建一个
Fabrizio Scarpa | Johann Sienz | Sondipon Adhikari | Rajib Chowdhury | Tony Murmu | David Bould | Y. Chandra | T. Murmu | S. Adhikari | F. Scarpa | J. Sienz | R. Chowdhury | Cris Arnold | David C. Bould | Y. Chandra | Cris Arnold | D. Bould
[1] J. Tsai,et al. Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics , 2009 .
[2] Wei Chen,et al. Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum , 2010 .
[3] S. Adhikari,et al. Graphene-based biosensor using transport properties , 2011 .
[4] Yan Wang,et al. Electromagnetic interference shielding of graphene/epoxy composites , 2009 .
[5] Peter W. Chung,et al. On a formulation for a multiscale atomistic-continuum homogenization method , 2003 .
[6] R. Ruoff,et al. Graphene-based polymer nanocomposites , 2011 .
[7] G. N. Labeas,et al. Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites , 2008 .
[8] R. Naghdabadi,et al. Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium , 2005 .
[9] R. Batra,et al. Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets , 2010 .
[10] J. S. Przemieniecki. Theory of matrix structural analysis , 1985 .
[11] G. Dilecce,et al. N 2 とO 2 によるN 2 + (B 2 Σ u + ,ν=0)の衝突消光と窒素スペクトル帯の強度比によるE/N測定に及ぼす影響 , 2010 .
[12] N. Koratkar,et al. Fracture and fatigue in graphene nanocomposites. , 2010, Small.
[13] S. Adhikari,et al. Vibration spectra of fullerene family , 2011 .
[14] Y. Gan,et al. STM investigation on interaction between superstructure and grain boundary in graphite , 2003 .
[15] Ted Belytschko,et al. A bridging domain and strain computation method for coupled atomistic–continuum modelling of solids , 2007 .
[16] S. Adhikari,et al. Thickness and in-plane elasticity of Graphane , 2011 .
[17] R. Naghdabadi,et al. Multiscale Nonlinear Constitutive Modeling of Carbon Nanostructures Based on Interatomic Potentials , 2009 .
[18] Boris I. Yakobson,et al. C2F, BN, AND C NANOSHELL ELASTICITY FROM AB INITIO COMPUTATIONS , 2001 .
[19] Shaker A. Meguid,et al. Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes , 2010 .
[20] S. Stankovich,et al. Graphene-based composite materials , 2006, Nature.
[21] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[22] M. Hodak,et al. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .
[23] T. Kaneko. On Timoshenko's correction for shear in vibrating beams , 1975 .
[24] S. Adhikari,et al. A mechanical equivalence for Poisson's ratio and thickness of C–C bonds in single wall carbon nanotubes , 2008 .
[25] Prithu Mukhopadhyay,et al. Trends and Frontiers in Graphene-Based Polymer Nanocomposites , 2011 .
[26] S. Timoshenko,et al. THEORY OF PLATES AND SHELLS , 1959 .
[27] Paraskevas Papanikos,et al. Finite element modeling of single-walled carbon nanotubes , 2005 .
[28] R. Mülhaupt,et al. Graphene Nanocomposites Prepared From Blends of Polymer Latex with Chemically Reduced Graphite Oxide Dispersions , 2010 .
[29] Rasoul Khandan,et al. A method for developing the equivalent continuum model of a single layer graphene sheet , 2008 .
[30] G. B. Warburton,et al. The Vibration of Rectangular Plates , 1954 .
[31] S. Tsai,et al. Introduction to composite materials , 1980 .
[32] Ji-Beom Yoo,et al. A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. , 2010, Journal of colloid and interface science.
[33] Mehdi Hojjati,et al. Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .
[34] Chengyuan Wang,et al. A molecular mechanics approach for the vibration of single-walled carbon nanotubes , 2010 .
[35] Zhong-Zhen Yu,et al. Buckling resistant graphene nanocomposites , 2009 .
[36] Fabrizio Scarpa,et al. Transverse vibration of single-layer graphene sheets , 2011 .
[37] Lei Gong,et al. Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite , 2010, Advanced materials.
[38] Roham Rafiee,et al. On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region , 2010 .
[39] D. J. Gorman,et al. Free Vibration Analysis of Rectangular Plates , 1982 .
[40] Ted Belytschko,et al. Concurrently coupled atomistic and XFEM models for dislocations and cracks , 2009 .
[41] A. Masud,et al. A multiscale framework for computational nanomechanics: Application to the modeling of carbon nanotubes , 2009 .
[42] H. Saunders. Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .
[43] Erica L. Corral,et al. Toughening in graphene ceramic composites. , 2011, ACS nano.
[44] L. Brinson,et al. Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.
[45] Tsu-Wei Chou,et al. Multiscale modeling of compressive behavior of carbon nanotube/polymer composites , 2006 .
[46] Edward L. Wilson,et al. Numerical methods in finite element analysis , 1976 .
[47] N. Koratkar,et al. Graphene nanoribbon composites. , 2010, ACS nano.
[48] R. Blevins,et al. Formulas for natural frequency and mode shape , 1984 .
[49] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[50] T. Murmu,et al. Nonlocal vibration of bonded double-nanoplate-systems , 2011 .
[51] Ted Belytschko,et al. Multiscale coupling schemes spanning the quantum mechanical, atomistic forcefield, and continuum regimes , 2008 .
[52] W. Soedel. Vibrations of shells and plates , 1981 .
[53] R. Naghdabadi,et al. Nonlinear vibrational analysis of single-layer graphene sheets , 2010, Nanotechnology.
[54] Zhong-Zhen Yu,et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding , 2010 .
[55] Yan Wang,et al. Infrared-Triggered Actuators from Graphene-Based Nanocomposites , 2009 .
[56] R. Rafiee,et al. A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites , 2010 .
[57] M. Roukes,et al. Parametric nanomechanical amplification at very high frequency. , 2009, Nano letters.
[58] S. Adhikari,et al. The calibration of carbon nanotube based bionanosensors , 2010 .
[59] S. Adhikari,et al. Effective elastic mechanical properties of single layer graphene sheets , 2009, Nanotechnology.
[60] S. K. Georgantzinos,et al. Size-dependent non-linear mechanical properties of graphene nanoribbons , 2011 .
[61] R. Verdejo,et al. Graphene filled polymer nanocomposites , 2011 .
[62] Ted Belytschko,et al. Bridging domain methods for coupled atomistic–continuum models with L2 or H1 couplings , 2009 .
[63] M. Shokrieh,et al. Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach , 2010 .
[64] T. Chou,et al. On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .
[65] Ken Kuang,et al. Fuel Cell Electronics Packaging , 2007 .
[66] F. Scarpa,et al. Vibrational characteristics of bilayer graphene sheets , 2011 .