Distance edge coloring and collision-free communication in wireless sensor networks

Motivated by the problem of link scheduling in wireless sensor networks where different sensors have different transmission and interference ranges and may be mobile, we study the problem of “distance edge coloring” of graphs, which is a generalization of proper edge coloring. Let Gbe a graph modeling a sensor network. An l-distance edge coloring of Gis a coloring of the edges of Gsuch that any two edges within distance lof each other are assigned different colors. The parameter lis chosen, so that the links corresponding to two edges that are assigned the same color do not interfere. We investigate the l-distance edge coloring problem on several families of graphs that can be used as topologies in sensor deployment. We focus on determining the minimum number of colors needed and optimal coloring algorithms. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013

[1]  Local structures in plane maps and distance colourings , 2001, Discret. Math..

[2]  Ping Zhang,et al.  Radio Labelings of Cycles , 2002, Ars Comb..

[3]  S. Ramanathan,et al.  A unified framework and algorithm for channel assignment in wireless networks , 1999, Wirel. Networks.

[4]  Aravind Srinivasan,et al.  The local nature of Δ-coloring and its algorithmic applications , 1995, Comb..

[5]  Bruce E. Hajek,et al.  Link scheduling in polynomial time , 1988, IEEE Trans. Inf. Theory.

[6]  Subramanian Ramanathan,et al.  Scheduling algorithms for multihop radio networks , 1993, TNET.

[7]  D. König Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre , 1916 .

[8]  Erdal Arikan,et al.  Some complexity results about packet radio networks , 1983, IEEE Trans. Inf. Theory.

[9]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[10]  Milind Dawande,et al.  Link scheduling in wireless sensor networks: Distributed edge-coloring revisited , 2008, J. Parallel Distributed Comput..

[11]  Madhav V. Marathe,et al.  Strong edge coloring for channel assignment in wireless radio networks , 2006, Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW'06).

[12]  Takehiro Ito,et al.  Algorithms for finding distance-edge-colorings of graphs , 2005, J. Discrete Algorithms.

[13]  Zdzislaw Skupien Some maximum multigraphs and adge/vertex distance colourings , 1995, Discuss. Math. Graph Theory.

[14]  Alessandro Panconesi,et al.  Nearly optimal distributed edge coloring in O (log log n ) rounds , 1997 .

[15]  Sébastien Tixeuil,et al.  A Distributed TDMA Slot Assignment Algorithm for Wireless Sensor Networks , 2004, ALGOSENSORS.

[16]  Márcia R. Cerioli,et al.  On L(2, 1)-coloring split, chordal bipartite, and weakly chordal graphs , 2012, Discret. Appl. Math..

[17]  Felipe Maia Galvão França,et al.  Two ID-Free Distributed Distance-2 Edge Coloring Algorithms for WSNs , 2009, Networking.

[18]  Ross J. Kang,et al.  On distance edge-colourings and matchings , 2009, Electron. Notes Discret. Math..

[19]  Robin J. Wilson,et al.  Edge-colorings of graphs — A survey , 1978 .

[20]  Daphne Der-Fen Liu Radio number for trees , 2008, Discret. Math..

[21]  Martin Skoviera,et al.  L(2, 1)-labelling of generalized prisms , 2012, Discret. Appl. Math..

[22]  Sandeep S. Kulkarni,et al.  Collision-Free Communication in Sensor Networks , 2003, Self-Stabilizing Systems.

[23]  Li Yin,et al.  Transmission Scheduling in Sensor Networks via Directed Edge Coloring , 2007, 2007 IEEE International Conference on Communications.

[24]  Sergiy Butenko,et al.  Graph Domination, Coloring and Cliques in Telecommunications , 2006, Handbook of Optimization in Telecommunications.

[25]  Xiang-Yang Li,et al.  Energy Efficient TDMA Sleep Scheduling in Wireless Sensor Networks , 2009, IEEE INFOCOM 2009.

[26]  Zhendong Shao,et al.  The L(2, 1)-labeling of K1, n-free graphs and its applications , 2008, Appl. Math. Lett..