PersonALL: a genetic scoring guide for personalized risk assessment in pediatric B-cell precursor acute lymphoblastic leukemia

[1]  J. Rossi,et al.  Impact of IKZF1 Deletions in the Prognosis of Childhood Acute Lymphoblastic Leukemia in Argentina , 2022, Cancers.

[2]  A. Jemal,et al.  Cancer statistics, 2022 , 2022, CA: a cancer journal for clinicians.

[3]  C. Mullighan,et al.  Pediatric acute lymphoblastic leukemia , 2020, Haematologica.

[4]  D. Alpár,et al.  Comprehensive profiling of disease-relevant copy number aberrations for advanced clinical diagnostics of pediatric acute lymphoblastic leukemia , 2019, Modern Pathology.

[5]  H. Cavé,et al.  IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? , 2019, Blood.

[6]  L. Kumar,et al.  Rapid Identification of Key Copy Number Alterations in B- and T-Cell Acute Lymphoblastic Leukemia by Digital Multiplex Ligation-Dependent Probe Amplification , 2019, Front. Oncol..

[7]  H. Pimentel-Gutiérrez,et al.  IKZF1 Gene Deletion in Pediatric Patients Diagnosed with Acute Lymphoblastic Leukemia in Mexico , 2019, Cytogenetic and Genome Research.

[8]  M. D. Den Boer,et al.  Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL. , 2019, Blood advances.

[9]  B. Scheijen,et al.  The many faces of IKZF1 in B-cell precursor acute lymphoblastic leukemia , 2018, Haematologica.

[10]  J. Schouten,et al.  Digital Multiplex Ligation-Dependent Probe Amplification for Detection of Key Copy Number Alterations in T- and B-Cell Lymphoblastic Leukemia. , 2017, The Journal of molecular diagnostics : JMD.

[11]  M. D. Den Boer,et al.  Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients , 2016, Haematologica.

[12]  R. Advani,et al.  The World Health Organization Classification of Lymphoid Neoplasms , 2013 .

[13]  Eric Talevich,et al.  CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..

[14]  J. Hernández-Rivas,et al.  Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome , 2016, PloS one.

[15]  B. Johansson,et al.  The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia , 2015, Nature Genetics.

[16]  P. Campbell,et al.  Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes , 2015, Nature Communications.

[17]  R. Wade,et al.  A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. , 2014, Blood.

[18]  M. Greaves,et al.  Evolutionary trajectories of hyperdiploid ALL in monozygotic twins , 2014, Leukemia.

[19]  J. Tchinda,et al.  An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome , 2014, Leukemia.

[20]  M. Stratton,et al.  RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia , 2014, Nature Genetics.

[21]  W. Evans,et al.  Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. , 2013, Blood.

[22]  C. Harrison,et al.  Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features , 2013, Haematologica.

[23]  R. Houlston,et al.  Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia , 2013, Proceedings of the National Academy of Sciences.

[24]  F. Speleman,et al.  Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. , 2013, Blood.

[25]  D. de Jong,et al.  MLPA is a powerful tool for detecting lymphoblastic transformation in chronic myeloid leukemia and revealing the clonal origin of relapse in pediatric acute lymphoblastic leukemia. , 2012, Cancer genetics.

[26]  Paul T. Spellman,et al.  Parent-specific copy number in paired tumor-normal studies using circular binary segmentation , 2011, Bioinform..

[27]  C. Harrison,et al.  Evaluation of multiplex ligation‐dependent probe amplification as a method for the detection of copy number abnormalities in B‐cell precursor acute lymphoblastic leukemia , 2010, Genes, chromosomes & cancer.

[28]  C. V. D. Schoot,et al.  Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia , 2011, Leukemia.

[29]  Bertil Johansson,et al.  High hyperdiploid childhood acute lymphoblastic leukemia , 2009, Genes, chromosomes & cancer.

[30]  Andrew G. Hall,et al.  The complex genomic profile of ETV6‐RUNX1 positive acute lymphoblastic leukemia highlights a recurrent deletion of TBL1XR1 , 2008, Genes, chromosomes & cancer.

[31]  James R. Downing,et al.  Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia , 2008, Science.

[32]  Christopher B. Miller,et al.  BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros , 2008, Nature.

[33]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[34]  E. S. Venkatraman,et al.  A faster circular binary segmentation algorithm for the analysis of array CGH data , 2007, Bioinform..

[35]  S. Richards,et al.  Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. , 2003, Blood.

[36]  R. Mátics,et al.  Conserved hierarchical gain of chromosome 4 is an independent prognostic factor in high hyperdiploid pediatric acute lymphoblastic leukemia. , 2017, Leukemia research.

[37]  D Rizopoulos,et al.  Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study , 2016, Leukemia.

[38]  M. Greaves Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. , 2009, Hematology. American Society of Hematology. Education Program.