PersonALL: a genetic scoring guide for personalized risk assessment in pediatric B-cell precursor acute lymphoblastic leukemia
暂无分享,去创建一个
E. Sebestyén | D. Alpár | G. Kriván | S. Savola | K. de Groot | Judit Müller | Z. Jakab | C. Bödör | G. Kovács | I. Szegedi | B. Kajtár | L. Pajor | K. Bartyik | A. Matolcsy | C. Kiss | Peter Hauser | I. Haltrich | Ágnes Kelemen | G. Ottóffy | D. Erdélyi | L. Kotmayer | A. Benard-Slagter | Á. Vojcek | Réka Simon | S. Krizsán | B. Egyed | L. Tiszlavicz | Krisztina Csanádi | A. Ujfalusi | L. Hegyi | B. Bâtai | G. Péter | G. Bedics | Anna Bekő | Lilla Gyorgyi Tiszlavicz
[1] J. Rossi,et al. Impact of IKZF1 Deletions in the Prognosis of Childhood Acute Lymphoblastic Leukemia in Argentina , 2022, Cancers.
[2] A. Jemal,et al. Cancer statistics, 2022 , 2022, CA: a cancer journal for clinicians.
[3] C. Mullighan,et al. Pediatric acute lymphoblastic leukemia , 2020, Haematologica.
[4] D. Alpár,et al. Comprehensive profiling of disease-relevant copy number aberrations for advanced clinical diagnostics of pediatric acute lymphoblastic leukemia , 2019, Modern Pathology.
[5] H. Cavé,et al. IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? , 2019, Blood.
[6] L. Kumar,et al. Rapid Identification of Key Copy Number Alterations in B- and T-Cell Acute Lymphoblastic Leukemia by Digital Multiplex Ligation-Dependent Probe Amplification , 2019, Front. Oncol..
[7] H. Pimentel-Gutiérrez,et al. IKZF1 Gene Deletion in Pediatric Patients Diagnosed with Acute Lymphoblastic Leukemia in Mexico , 2019, Cytogenetic and Genome Research.
[8] M. D. Den Boer,et al. Validation of the United Kingdom copy-number alteration classifier in 3239 children with B-cell precursor ALL. , 2019, Blood advances.
[9] B. Scheijen,et al. The many faces of IKZF1 in B-cell precursor acute lymphoblastic leukemia , 2018, Haematologica.
[10] J. Schouten,et al. Digital Multiplex Ligation-Dependent Probe Amplification for Detection of Key Copy Number Alterations in T- and B-Cell Lymphoblastic Leukemia. , 2017, The Journal of molecular diagnostics : JMD.
[11] M. D. Den Boer,et al. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients , 2016, Haematologica.
[12] R. Advani,et al. The World Health Organization Classification of Lymphoid Neoplasms , 2013 .
[13] Eric Talevich,et al. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing , 2016, PLoS Comput. Biol..
[14] J. Hernández-Rivas,et al. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome , 2016, PloS one.
[15] B. Johansson,et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia , 2015, Nature Genetics.
[16] P. Campbell,et al. Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes , 2015, Nature Communications.
[17] R. Wade,et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. , 2014, Blood.
[18] M. Greaves,et al. Evolutionary trajectories of hyperdiploid ALL in monozygotic twins , 2014, Leukemia.
[19] J. Tchinda,et al. An international study of intrachromosomal amplification of chromosome 21 (iAMP21): cytogenetic characterization and outcome , 2014, Leukemia.
[20] M. Stratton,et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia , 2014, Nature Genetics.
[21] W. Evans,et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. , 2013, Blood.
[22] C. Harrison,et al. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features , 2013, Haematologica.
[23] R. Houlston,et al. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia , 2013, Proceedings of the National Academy of Sciences.
[24] F. Speleman,et al. Hyperdiploidy with 58-66 chromosomes in childhood B-acute lymphoblastic leukemia is highly curable: 58951 CLG-EORTC results. , 2013, Blood.
[25] D. de Jong,et al. MLPA is a powerful tool for detecting lymphoblastic transformation in chronic myeloid leukemia and revealing the clonal origin of relapse in pediatric acute lymphoblastic leukemia. , 2012, Cancer genetics.
[26] Paul T. Spellman,et al. Parent-specific copy number in paired tumor-normal studies using circular binary segmentation , 2011, Bioinform..
[27] C. Harrison,et al. Evaluation of multiplex ligation‐dependent probe amplification as a method for the detection of copy number abnormalities in B‐cell precursor acute lymphoblastic leukemia , 2010, Genes, chromosomes & cancer.
[28] C. V. D. Schoot,et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia , 2011, Leukemia.
[29] Bertil Johansson,et al. High hyperdiploid childhood acute lymphoblastic leukemia , 2009, Genes, chromosomes & cancer.
[30] Andrew G. Hall,et al. The complex genomic profile of ETV6‐RUNX1 positive acute lymphoblastic leukemia highlights a recurrent deletion of TBL1XR1 , 2008, Genes, chromosomes & cancer.
[31] James R. Downing,et al. Genomic Analysis of the Clonal Origins of Relapsed Acute Lymphoblastic Leukemia , 2008, Science.
[32] Christopher B. Miller,et al. BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros , 2008, Nature.
[33] Christopher B. Miller,et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.
[34] E. S. Venkatraman,et al. A faster circular binary segmentation algorithm for the analysis of array CGH data , 2007, Bioinform..
[35] S. Richards,et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. , 2003, Blood.
[36] R. Mátics,et al. Conserved hierarchical gain of chromosome 4 is an independent prognostic factor in high hyperdiploid pediatric acute lymphoblastic leukemia. , 2017, Leukemia research.
[37] D Rizopoulos,et al. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lymphoblastic leukemia: an international collaborative study , 2016, Leukemia.
[38] M. Greaves. Darwin and evolutionary tales in leukemia. The Ham-Wasserman Lecture. , 2009, Hematology. American Society of Hematology. Education Program.