Functional stimuli responsive hydrogel devices by self-folding

We describe a photolithographic approach to create functional stimuli responsive, self-folding, microscale hydrogel devices using thin, gradient cross-linked hinges and thick, fully cross-linked panels. The hydrogels are composed of poly (N-isopropylacrylamide-co-acrylic acid) (pNIPAM-AAc) with reversible stimuli responsive properties just below physiological temperatures. We show that a variety of three-dimensional structures can be formed and reversibly actuated by temperature or pH. We experimentally characterized the swelling and mechanical properties of pNIPAM-AAc and developed a finite element model to rationalize self-folding and its variation with hinge thickness and swelling ratio. Finally, we highlight applications of this approach in the creation of functional devices such as self-folding polymeric micro-capsules, untethered micro-grippers and thermally steered micro-mirror systems.

[1]  Hye Rin Kwag,et al.  Stimuli-responsive theragrippers for chemomechanical controlled release. , 2014, Angewandte Chemie.

[2]  George M. Whitesides,et al.  A Hybrid Combining Hard and Soft Robots , 2014 .

[3]  Angelo S. Mao,et al.  An Integrated Microrobotic Platform for On‐Demand, Targeted Therapeutic Interventions , 2014, Advanced materials.

[4]  L. Ionov Biomimetic Hydrogel‐Based Actuating Systems , 2013 .

[5]  Ulrike Wallrabe,et al.  Unconventional applications of wire bonding create opportunities for microsystem integration , 2013 .

[6]  D. Gracias Stimuli responsive self-folding using thin polymer films , 2013 .

[7]  Benjamin C. K. Tee,et al.  An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. , 2012, Nature nanotechnology.

[8]  R. Fernandes,et al.  Self-folding polymeric containers for encapsulation and delivery of drugs. , 2012, Advanced drug delivery reviews.

[9]  R. Hayward,et al.  Designing Responsive Buckled Surfaces by Halftone Gel Lithography , 2012, Science.

[10]  R. Hayward,et al.  Thermally responsive rolling of thin gel strips with discrete variations in swelling , 2012 .

[11]  M. Jamal,et al.  Differentially photo-crosslinked polymers enable self-assembling microfluidics. , 2011, Nature communications.

[12]  Wei Xu,et al.  Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors. , 2011, Nano letters.

[13]  Lallit Anand,et al.  A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels , 2011 .

[14]  Zhenan Bao,et al.  Stretchable, elastic materials and devices for solar energy conversion , 2011 .

[15]  Andrew G. Gillies,et al.  Optically-and Thermally-responsive Programmable Materials Based on Carbon Nanotube-hydrogel Polymer Composites , 2022 .

[16]  L. Ionov,et al.  Self-folding all-polymer thermoresponsive microcapsules , 2011 .

[17]  George M. Whitesides,et al.  Titelbild: Soft Robotics for Chemists (Angew. Chem. 8/2011) , 2011 .

[18]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[19]  M. Jamal,et al.  Self-folding micropatterned polymeric containers , 2011, Biomedical microdevices.

[20]  D. Gracias,et al.  Photolithographically patterned smart hydrogel based bilayer actuators , 2010 .

[21]  Tong Cai,et al.  Controlled actuation of alternating magnetic field-sensitive tunable hydrogels , 2010 .

[22]  L. Ionov,et al.  Temperature controlled encapsulation and release using partially biodegradable thermo-magneto-sensitive self-rolling tubes , 2010 .

[23]  R. Hayward,et al.  Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. , 2010, Nature materials.

[24]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[25]  K. Tobita,et al.  Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. , 2009, Biomaterials.

[26]  A. Yarin,et al.  Stimuli-responsive copolymers of n-isopropyl acrylamide with enhanced longevity in water for micro- and nanofluidics, drug delivery and non-woven applications , 2009 .

[27]  T. Jovin,et al.  Protein manipulation by stimuli-responsive polymers encapsulated in erythrocyte ghosts , 2009 .

[28]  T. Fujigaya,et al.  NIR Laser‐Driven Reversible Volume Phase Transition of Single‐Walled Carbon Nanotube/Poly(N‐isopropylacrylamide) Composite Gels , 2008 .

[29]  D. Gracias,et al.  Solvent driven motion of lithographically fabricated gels. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[30]  R. Kasi,et al.  Stimuli-responsive polymer gels. , 2008, Soft matter.

[31]  Z. Suo,et al.  A theory of coupled diffusion and large deformation in polymeric gels , 2008 .

[32]  R. K. Shah,et al.  Monodisperse Thermoresponsive Microgels with Tunable Volume‐Phase Transition Kinetics , 2007 .

[33]  R. Yoshida,et al.  Self‐Walking Gel , 2007 .

[34]  C. Cho,et al.  Magnetostrictive Micro Mirrors for an Optical Switch Matrix , 2007, Sensors.

[35]  D. Gracias,et al.  Surface tension-driven self-folding polyhedra. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[36]  Y. Lee,et al.  Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors , 2007 .

[37]  E. Sharon,et al.  Shaping of Elastic Sheets by Prescription of Non-Euclidean Metrics , 2007, Science.

[38]  R. Yoshida,et al.  Maskless microfabrication of thermosensitive gels using a microscope and application to a controlled release microchip. , 2006, Lab on a chip.

[39]  C. Alexander,et al.  Stimuli responsive polymers for biomedical applications. , 2005, Chemical Society reviews.

[40]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[41]  E. Gil,et al.  Stimuli-reponsive polymers and their bioconjugates , 2004 .

[42]  R. Akashi,et al.  All‐Polymer‐Gel Light Modulator Consisting of a “Gel‐in‐Gel” System , 2004 .

[43]  C. R. Giles,et al.  Beam-steering micromirrors for large optical cross-connects , 2003 .

[44]  G. Whitesides,et al.  Fabrication of Micrometer‐Scale, Patterned Polyhedra by Self‐Assembly , 2002 .

[45]  A. Yamaguchi,et al.  Reversible phase transitions in polymer gels induced by radiation forces , 2000, Nature.

[46]  M. Shibayama,et al.  Shrinking Kinetics of Poly(N-isopropylacrylamide) Gels T-Jumped across Their Volume Phase Transition Temperatures , 1999 .

[47]  Zhibing Hu,et al.  Synthesis and Application of Modulated Polymer Gels , 1995, Science.

[48]  A. Hoffman,et al.  Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH , 1995, Nature.

[49]  E. Nilsen,et al.  Thermonastic leaf movements: a synthesis of research with Rhododendron , 1992 .

[50]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[51]  Toyoichi Tanaka,et al.  Phase transition in polymer gels induced by visible light , 1990, Nature.

[52]  Toyoichi Tanaka,et al.  Volume‐phase transitions of ionized N‐isopropylacrylamide gels , 1987 .

[53]  A. Bennett,et al.  Leaf Closure in the Venus Flytrap: An Acid Growth Response , 1982, Science.

[54]  P. Flory,et al.  STATISTICAL MECHANICS OF CROSS-LINKED POLYMER NETWORKS II. SWELLING , 1943 .

[55]  P. Flory Thermodynamics of High Polymer Solutions , 1941 .

[56]  M. Huggins Solutions of Long Chain Compounds , 1941 .