Chaos control and duration time of a class of uncertain chaotic systems

This Letter presents a robust control scheme for a class of uncertain chaotic systems in the canonical form, with unknown nonlinearities. To cope with the uncertainties, we combine Lyapunov methodology with observer design. The proposed strategy comprises an exponential linearizing feedback and an uncertainty estimator. The developed control scheme allows chaos suppression. The advantage of this method over the existing results is that the control time is explicitly computed. Simulations studies are conducted to verify the effectiveness of the scheme.

[1]  H. Nijmeijer,et al.  On Lyapunov control of the Duffing equation , 1995 .

[2]  Zhong-Ping Jiang,et al.  Design of Robust Adaptive Controllers for Nonlinear Systems with Dynamic Uncertainties , 1998, Autom..

[3]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[4]  Shuzhi Sam Ge,et al.  Uncertain Chaotic System Control via Adaptive Neural Design , 2002, Int. J. Bifurc. Chaos.

[5]  Dressler,et al.  Controlling chaos using time delay coordinates. , 1992, Physical review letters.

[6]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[7]  Donald E. Beasley,et al.  Chaos suppression in gas-solid fluidization. , 1998, Chaos.

[8]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[9]  P. Kokotovic,et al.  The peaking phenomenon and the global stabilization of nonlinear systems , 1991 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[12]  Ricardo Femat,et al.  Synchronization of a class of strictly different chaotic oscillators , 1997 .

[13]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[14]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[15]  Chi-Chuan Hwang,et al.  A new feedback control of a modified Chua's circuit system , 1996 .

[16]  J. Álvarez-Ramírez,et al.  Chaotic behavior from a human biological signal , 1996 .

[17]  Ricardo Femat,et al.  A strategy to control chaos in nonlinear driven oscillators with least prior knowledge , 1997 .

[18]  Ricardo Femat,et al.  A time delay coordinates strategy to control a class of chaotic oscillators , 1996 .

[19]  Leon O. Chua,et al.  ADAPTIVE SYNCHRONIZATION OF CHUA'S OSCILLATORS , 1996 .

[20]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[21]  Guanrong Chen,et al.  On feedback control of chaotic continuous-time systems , 1993 .

[22]  Ricardo Femat,et al.  On robust chaos suppression in a class of nondriven oscillators: application to the Chua's circuit , 1999 .

[23]  M. Bernardo An adaptive approach to the control and synchronization of continuous-time chaotic systems , 1996 .

[24]  Chi-Chuan Hwang,et al.  A linear continuous feedback control of Chua's circuit , 1997 .

[25]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[26]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[27]  Guanrong Chen,et al.  From Chaos to Order - Perspectives and Methodologies in Controlling Chaotic Nonlinear Dynamical Systems , 1993 .

[28]  Ricardo Femat,et al.  A discrete approach to the control and synchronization of a class of chaotic oscillators , 1999 .