Neuromagnetic correlates of visual motion coherence

In order to characterize cortical responses to coherent motion we use magnetoencephalography (MEG) to measure human brain activity that is modulated by the degree of global coherence in a visual motion stimulus. Five subjects passively viewed two‐phase motion sequences of sparse random dot fields. In the first (incoherent) phase the dots moved in random directions; in the second (coherent) phase a variable percentage of dots moved uniformly in one direction while the others moved randomly. We show that: (i) visual‐motion‐evoked magnetic fields, measured with a whole‐scalp neuromagnetometer, reveal two transient events, within which we identify two significant peaks – the ‘ON‐M220’ peak approximately 220 ms after the onset of incoherent motion and the ‘TR‐M230’ peak, approximately 230 ms after the transition from incoherent to coherent motion; (ii) in lateral occipital channels, the TR‐M230 peak amplitude varies with the percentage of motion coherence; (iii) two main sources are active in response to the transition from incoherent to coherent motion, the human medial temporal area complex/V3 accessory area (hMT+/V3A) and the superior temporal sulcus (STS), and (iv) these distinct areas show a similar, significant dependence of response strength and latency on motion coherence.

[1]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[2]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  O. Grüsser,et al.  Vestibular neurones in the parieto‐insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. , 1990, The Journal of physiology.

[4]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[5]  M. Kuba,et al.  Visual evoked potentials specific for motion onset , 2004, Documenta Ophthalmologica.

[6]  R. S. J. Frackowiak,et al.  Activity in human areas V1/V2, V3 and V5 during the perception of coherent and incoherent motion , 1996, NeuroImage.

[7]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[8]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[9]  R. Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. II. Physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[11]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[12]  Jean Bullier,et al.  Reversible deactivation of cerebral network components , 1996, Trends in Neurosciences.

[13]  Michael Bach,et al.  Time course of motion adaptation: Motion-onset visual evoked potentials and subjective estimates , 1999, Vision Research.

[14]  Lauri Parkkonen,et al.  An interference suppression system for multichannel magnetic field detector arrays , 1998 .

[15]  A. Jedynak,et al.  Scalp distribution components of brain activity evoked by visual motion stimuli , 1998, Experimental Brain Research.

[16]  R. Ilmoniemi,et al.  Signal-space projection method for separating MEG or EEG into components , 1997, Medical and Biological Engineering and Computing.

[17]  G. R. Mangun,et al.  Form-From-Motion: MEG Evidence for Time Course and Processing Sequence , 2003, Journal of Cognitive Neuroscience.

[18]  C D Gilbert,et al.  Circuitry, architecture, and functional dynamics of visual cortex. , 1993, Cerebral cortex.

[19]  Visual evoked potentials elicited by a moving unidimensional noise pattern. , 1996, Electroencephalography and clinical neurophysiology.

[20]  S. Zeki The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[21]  M. Young,et al.  Neuronal population activity and functional imaging , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  Randolph Blake,et al.  Perceptual consequences of centre–surround antagonism in visual motion processing , 2003, Nature.

[23]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[24]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[25]  O. Braddick,et al.  Brain Areas Sensitive to Coherent Visual Motion , 2001, Perception.

[26]  M Niedeggen,et al.  Characteristics of visual evoked potentials generated by motion coherence onset. , 1999, Brain research. Cognitive brain research.

[27]  Stephen M. Smith,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[28]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[29]  R. Kakigi,et al.  Magnetic response of human extrastriate cortex in the detection of coherent and incoherent motion , 2000, Neuroscience.

[30]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[31]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[32]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[33]  V. Virsu,et al.  Activation of Human V5 Complex and Rolandic Regions in Association with Moving Visual Stimuli , 1997, NeuroImage.

[34]  Hiroshi Shibasaki,et al.  Human V5 demonstrated by magnetoencephalography using random dot kinematograms of different coherence levels , 2003, Neuroscience Research.

[35]  R. Turner,et al.  Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain , 2000, Current Biology.

[36]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[37]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  N. Mai,et al.  Selective disturbance of movement vision after bilateral brain damage. , 1983, Brain : a journal of neurology.

[39]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[40]  R. S. J. Frackowiak,et al.  The Activity in Human Areas V1/V2, V3, and V5 during the Perception of Coherent and Incoherent Motion , 1996, NeuroImage.

[41]  R. Hari The neuromagnetic method in the study of the human auditory cortex , 1990 .

[42]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[43]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[45]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[46]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[47]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[48]  Michael Bach,et al.  Motion adaptation governs the shape of motion-evoked cortical potentials , 1994, Vision Research.

[49]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[50]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[51]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  Martin I Sereno,et al.  Brain mapping in animals and humans , 1998, Current Opinion in Neurobiology.

[53]  Anders M. Dale,et al.  Representation of motion boundaries in retinotopic human visual cortical areas , 1997, Nature.

[54]  J M Zanker,et al.  Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling , 2000, The European journal of neuroscience.

[55]  Guy A. Orban,et al.  Areas involved in extracting structure from motion: an fMRI study in the awake fixating monkey , 2000 .

[56]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  G. Shulman,et al.  Effect of motion contrast on human cortical responses to moving stimuli. , 1998, Journal of neurophysiology.

[59]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[60]  M. Kuba,et al.  Properties of visual evoked potentials to onset of movement on a television screen , 1990, Documenta Ophthalmologica.

[61]  R. Andersen,et al.  Neural Mechanisms of Visual Motion Perception in Primates , 1997, Neuron.

[62]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[63]  L M Vaina,et al.  Functional segregation of color and motion processing in the human visual cortex: clinical evidence. , 1994, Cerebral cortex.

[64]  T Elbert,et al.  The cortical representation of object motion in man is inter‐individually variable , 1996, Neuroreport.

[65]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[66]  Michael Niedeggen,et al.  Motion evoked brain potentials parallel the consistency of coherent motion perception in humans , 1998, Neuroscience Letters.

[67]  Umberto Castiello,et al.  The human temporal lobe integrates facial form and motion: evidence from fMRI and ERP studies , 2003, NeuroImage.

[68]  W. Paulus,et al.  Identification of the visual motion area (area V5) in the human brain by dipole source analysis , 2004, Experimental Brain Research.

[69]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[70]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[71]  O. Braddick,et al.  The temporal integration and resolution of velocity signals , 1991, Vision Research.

[72]  R. Andersen,et al.  Center–Surround Antagonism Based on Disparity in Primate Area MT , 1998, The Journal of Neuroscience.

[73]  S Vanni,et al.  Visual motion activates V5 in dyslexics , 1997, Neuroreport.

[74]  K. D. Singh,et al.  Localization and functional analysis of human cortical area V5 using magneto-encephalography , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[75]  A. Hurlbert,et al.  Motion edges and regions guide image segmentation by colour , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[76]  Y. Okada,et al.  Genesis of MEG signals in a mammalian CNS structure. , 1997, Electroencephalography and clinical neurophysiology.