A theoretical study of inlet relative humidity control in PEM fuel cell

Abstract In this paper, the individual roles of inlet anode and cathode humidification, and their influences on PEM fuel cell’s electrical performance are discussed systematically by using a pseudo two-dimensional, two-phase PEM fuel cell model. It follows that the maximum power density point of a PEM fuel cell is strongly dependent on the combination of the inlet anode and cathode humidification conditions. Their influences, however, are predicted to be highly asymmetrical, with the anode and cathode humidification mainly affecting ohmic and concentration overpotential, respectively. The physical explanation to this asymmetry is given with the aid of a detailed set of simulation results. Finally, the developed understanding of their influences are employed to formulate two examples on the use of inlet relative humidity control as a simple and effective method for maximizing the volumetric power density and operating range of PEM fuel cell, respectively.

[1]  M. Suha Yazici UNIDO-ICHET support to hydrogen and fuel cell technologies in Turkey , 2011 .

[2]  C. Tse,et al.  Treatment of two-phase flow in cathode gas channel for an improved one-dimensional proton exchange m , 2011 .

[3]  Eiji Endoh,et al.  Degradation study of MEA for PEMFCs under low humidity conditions , 2004 .

[4]  Chao-Yang Wang,et al.  Model of Two-Phase Flow and Flooding Dynamics in Polymer Electrolyte Fuel Cells , 2005 .

[5]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[6]  M. Han,et al.  Investigation of self-humidifying anode in polymer electrolyte fuel cells , 2007 .

[7]  M. Watanabe,et al.  Preparation of highly dispersed SiO2 and Pt particles in Nafion®112 for self-humidifying electrolyte membranes in fuel cells , 2006 .

[8]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors , 2001 .

[9]  T. Ohsaka,et al.  Exploring the effects of symmetrical and asymmetrical relative humidity on the performance of H2/air PEM fuel cell at different temperatures , 2007 .

[10]  Suman Basu,et al.  Modeling two-phase flow in PEM fuel cell channels , 2008 .

[11]  T. Nguyen,et al.  Modeling the Effects of the Microporous Layer on the Net Water Transport Rate Across the Membrane in a PEM Fuel Cell , 2010 .

[12]  Christoph Ziegler,et al.  Transient Behavior of a Proton Exchange Membrane Fuel Cell under Dry Operation , 2006 .

[13]  D. Wilkinson,et al.  Aging mechanisms and lifetime of PEFC and DMFC , 2004 .

[14]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[15]  M. Suha Yazici,et al.  Hydrogen and fuel cell activities at UNIDO-ICHET , 2010 .

[16]  Juan G. Santiago,et al.  Dry gas operation of proton exchange membrane fuel cells with parallel channels: Non-porous versus porous plates , 2009 .

[17]  Keith Promislow,et al.  The effects of water and microstructure on the performance of polymer electrolyte fuel cells , 2006 .

[18]  Xianguo Li Principles of fuel cells , 2005 .

[19]  Shanhai Ge,et al.  Water Management in PEMFCs Using Absorbent Wicks , 2004 .

[20]  Xianguo Li,et al.  Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells , 2010 .

[21]  Michael Fowler,et al.  Design methodology for membrane-based plate-and-frame fuel cell humidifiers , 2008 .

[22]  K. Yoon,et al.  A novel preparation method for a self-humidifying polymer electrolyte membrane , 2002 .

[23]  Trung Van Nguyen,et al.  Three-Dimensional Simulation of Liquid Water Distribution in a PEMFC with Experimentally Measured Capillary Functions , 2007 .

[24]  Warren H. J. Hogarth,et al.  Operation of polymer electrolyte membrane fuel cells with dry feeds: Design and operating strategies , 2006 .

[25]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[26]  Hua Meng,et al.  Multi-dimensional liquid water transport in the cathode of a PEM fuel cell with consideration of the micro-porous layer (MPL) , 2009 .

[27]  Jürgen Schumacher,et al.  Two-Phase Dynamic Modeling of PEMFCs and Simulation of Cyclo-Voltammograms , 2005 .

[28]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[29]  Hubert A. Gasteiger,et al.  Handbook of fuel cells : fundamentals technology and applications , 2003 .

[30]  Jingrong Yu,et al.  In Situ Analysis of Performance Degradation of a PEMFC under Nonsaturated Humidification , 2005 .

[31]  Ralph E. White,et al.  A water and heat management model for proton-exchange-membrane fuel cells , 1993 .

[32]  K. Reifsnider,et al.  Mechanical Endurance of Polymer Electrolyte Membrane and PEM Fuel Cell Durability , 2006 .

[33]  Akeel A. Shah,et al.  Transient non-isothermal model of a polymer electrolyte fuel cell , 2007 .

[34]  T. Nguyen,et al.  Modeling Liquid Water Effects in the Gas Diffusion and Catalyst Layers of the Cathode of a PEM Fuel Cell , 2004 .

[35]  J. Weidner,et al.  Diffusion of water in Nafion 115 membranes , 2000 .

[36]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[37]  Akeel A. Shah,et al.  Recent trends and developments in polymer electrolyte membrane fuel cell modelling , 2011 .

[38]  T. Nguyen,et al.  Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields , 2000 .

[39]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[40]  O. Barbera,et al.  Effect of operative conditions on a PEFC stack performance , 2008 .

[41]  Chao-Yang Wang,et al.  Dynamic water management of polymer electrolyte membrane fuel cells using intermittent RH control , 2010 .

[42]  J. Marcinkoski,et al.  Progress in the US DOE fuel cell subprogram efforts in polymer electrolyte fuel cells , 2008 .

[43]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors [Journal of the Electrochemical Society 148, A1324 (2001)] , 2003 .

[44]  Hiroyuki Uchida,et al.  Self‐Humidifying Polymer Electrolyte Membranes for Fuel Cells , 1996 .

[45]  Felix N. Büchi,et al.  Operating Proton Exchange Membrane Fuel Cells Without External Humidification of the Reactant Gases Fundamental Aspects , 1997 .

[46]  Xuan Cheng,et al.  PEM fuel cells operated at 0% relative humidity in the temperature range of 23–120 °C , 2007 .

[47]  I. Hsing,et al.  Internally humidified polymer electrolyte fuel cells using water absorbing sponge , 2005 .

[48]  Walter Mérida,et al.  Experimental verification of a membrane humidifier model based on the effectiveness method , 2010 .

[49]  James M. Fenton,et al.  Operation of Nafion®-based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers , 2004 .

[50]  Chao-Yang Wang,et al.  Two-Phase Transport in Polymer Electrolyte Fuel Cells with Bilayer Cathode Gas Diffusion Media , 2005 .

[51]  N. Brandon,et al.  Model based design and test of cooling plates for an air-cooled polymer electrolyte fuel cell stack , 2011 .

[52]  Zhigang Qi,et al.  PEM fuel cell stacks operated under dry-reactant conditions , 2002 .

[53]  Xianguo Li,et al.  Correlation for the Effective Gas Diffusion Coefficient in Carbon Paper Diffusion Media , 2009 .

[54]  Fang-Bor Weng,et al.  Experimental investigation of PEM fuel cell aging under current cycling using segmented fuel cell , 2010 .

[55]  Nick Burke,et al.  Simultaneous Measurements of Species and Current Distributions in a PEFC under Low-Humidity Operation , 2005 .

[56]  Hiroyuki Uchida,et al.  Analyses of Self‐Humidification and Suppression of Gas Crossover in Pt‐Dispersed Polymer Electrolyte Membranes for Fuel Cells , 1998 .

[57]  Eiji Endoh,et al.  Degradation study of MEA for PEMFCs under low humidity conditions , 2004 .

[58]  Graham Ault,et al.  Modeling, analysis and control system development for the Italian hydrogen house , 2009 .

[59]  Ø. Ulleberg,et al.  The wind/hydrogen demonstration system at Utsira in Norway: Evaluation of system performance using operational data and updated hydrogen energy system modeling tools , 2010 .

[60]  Song-Yul Choe,et al.  Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications , 2008 .

[61]  C. Min,et al.  A novel three-dimensional, two-phase and non-isothermal numerical model for proton exchange membrane fuel cell , 2010 .

[62]  Jin Hyun Nam,et al.  Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium , 2003 .

[63]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[64]  T. Nguyen,et al.  Modeling the Effects of Capillary Property of Porous Media on the Performance of the Cathode of a PEMFC , 2008 .

[65]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[66]  E. W. Thiele Relation between Catalytic Activity and Size of Particle , 1939 .

[67]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[68]  Matthew M. Mench,et al.  Fuel Cell Engines , 2008 .