Numerical Linear Algebra: Theory and Applications
暂无分享,去创建一个
Larisa Beilina | Evgenii M. Karchevskii | Mikhail Karchevskii | L. Beilina | E. Karchevskii | M. Karchevskii
[1] M. Marcus,et al. A Survey of Matrix Theory and Matrix Inequalities , 1965 .
[2] A. I. Malʹt︠s︡ev. Foundations of linear algebra , 1963 .
[3] J. Cullum,et al. A generalized nonsymmetric Lanczos procedure , 1989 .
[4] Robert D. Skeel,et al. Scaling for Numerical Stability in Gaussian Elimination , 1979, JACM.
[5] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[6] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[7] Fuzhen Zhang. Matrix Theory: Basic Results and Techniques , 1999 .
[8] L. Mirsky,et al. Introduction to Linear Algebra , 1965, The Mathematical Gazette.
[9] V. Prasolov. Problems and theorems in linear algebra , 1994 .
[10] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[11] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[12] W. Gragg,et al. On computing accurate singular values and eigenvalues of matrices with acyclic graphs , 1992 .
[13] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[14] Ė. B. Vinberg,et al. A course in algebra , 2003 .
[15] Kenneth Kuttler,et al. Elementary Linear Algebra , 2012 .
[16] K. Ikramov. Matrix pencils: Theory, applications, and numerical methods , 1993 .
[17] S. Godunov. Modern Aspects of Linear Algebra , 1998 .
[18] Zhaojun Bai,et al. Progress in the numerical solution of the nonsymmetric eigenvalue problem , 1995, Numer. Linear Algebra Appl..
[19] S. F. Karpenko. Approximate solution of a class of operator equations , 1982 .
[20] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[21] Xian-He Sun,et al. Parallel Homotopy Algorithm for the Symmetric Tridiagonal Eigenvalue Problem , 1991, SIAM J. Sci. Comput..
[22] L. Mirsky,et al. An introduction to linear algebra , 1957, Mathematical Gazette.
[23] J. G. Lewis,et al. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..
[24] J. Demmel,et al. On the correctness of some bisection-like parallel eigenvalue algorithms in floating point arithmetic. , 1995 .
[25] T. Y. Li,et al. Solving eigenvalue problems of real nonsymmetric matrices with real homotopies , 1992 .
[26] R. Skeel. Iterative refinement implies numerical stability for Gaussian elimination , 1980 .
[27] Beresford N. Parlett. The Construction of Orthogonal Eigenvectors for Tight Clusters by Use of Submatrices , 1996 .
[28] S. Batterson. Convergence of the shifted QR algorithm on 3×3 normal matrices , 1990 .
[29] Richard H. Byrd,et al. A Trust Region Algorithm for Nonlinearly Constrained Optimization , 1987 .
[30] Nicholas J. Highham. A survey of condition number estimation for triangular matrices , 1987 .
[32] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[33] J. Bunch,et al. Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .
[34] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[35] J. Demmel,et al. Solving Sparse Linear Systems with Sparse Backward Error , 2015 .
[36] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[37] James Demmel,et al. Jacobi's Method is More Accurate than QR , 1989, SIAM J. Matrix Anal. Appl..
[38] I. Gel'fand,et al. Lectures on Linear Algebra , 1961 .
[39] C. Bischof. Incremental condition estimation , 1990 .
[40] O. Axelsson. Iterative solution methods , 1995 .
[41] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[42] Y. Saad,et al. Numerical solution of large nonsymmetric eigenvalue problems , 1989 .
[43] Tien-Yien Li,et al. Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems , 1992 .
[44] A. Sluis. Condition numbers and equilibration of matrices , 1969 .
[45] Nicholas J. Higham,et al. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation , 1988, TOMS.
[46] Nicholas J. Higham,et al. Experience with a Matrix Norm Estimator , 1990, SIAM J. Sci. Comput..
[47] Inderjit S. Dhillon,et al. Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .
[48] B. Parlett,et al. Accurate singular values and differential qd algorithms , 1994 .
[49] Inderjit S. Dhillon,et al. A Way to Find the Most Redundant Equation in a Tridiagonal System , 1995 .
[50] Beresford N. Parlett,et al. The New qd Algorithms , 1995, Acta Numerica.
[51] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[52] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[53] Robert D. Skeel,et al. EFFECT OF EQUILIBRATION ON RESIDUAL SIZE FOR PARTIAL PIVOTING , 1981 .
[54] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[55] Peter Lancaster,et al. The theory of matrices , 1969 .
[56] H. T. Lau,et al. A Numerical Library in C for Scientists and Engineers , 1995 .
[57] P. G. Ciarlet,et al. Introduction to Numerical Linear Algebra and Optimisation , 1989 .
[58] Paul R. Halmos. Linear algebra problem book , 1995 .
[59] Michael A. Malcolm,et al. Computer methods for mathematical computations , 1977 .
[60] I. M. Glazman,et al. Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form , 1974 .
[61] A. Tikhonov,et al. Numerical Methods for the Solution of Ill-Posed Problems , 1995 .
[62] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[63] M. H. Wright,et al. FORTRAN Subroutines to Solve the Linear Least-Squares Problem and Compute the Complete Orthogonal Factorization. , 1978 .
[64] H. Simon. The Lanczos algorithm with partial reorthogonalization , 1984 .
[65] P. Halmos. Finite-Dimensional Vector Spaces , 1960 .
[66] Carl D. Meyer,et al. Matrix Analysis and Applied Linear Algebra , 2000 .
[67] D. Day. How the QR algorithm fails to converge and how to fix it , 1996 .
[68] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[69] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[70] F. Gantmacher,et al. Applications of the theory of matrices , 1960 .
[71] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .