Decision Tree-based Parametric Analysis of a CNC Turning Process

Computer numerical control (CNC) is a manufacturing concept where machine tools are automated to perform some predefined functions based on the instructions fed to them. CNC turning processes have found wide ranging applications in modern day manufacturing industries due to their capabilities to produce low cost high quality parts/components with very close dimensional tolerances. In order to exploit the fullest potential of a CNC turning process, it should always be operated while setting its different input parameters at their optimal levels. In this paper, two classification tree algorithms, i.e. classification and regression tree (CART) and Chi-squared automatic interaction detection (CHAID) are applied to study the effects of various turning parameters on the responses and identify the best machining conditions for a CNC process. It is perceived that those settings almost match with the observations of the earlier researchers. The CART algorithm outperforms CHAID with respect to higher overall classification accuracy and lower prediction risk.

[1]  Thanh-Phong Dao,et al.  An effective approach of adaptive neuro-fuzzy inference system-integrated teaching learning-based optimization for use in machining optimization of S45C CNC turning , 2018, Optimization and Engineering.

[2]  Anabele Lindner,et al.  Comparing decision tree algorithms to estimate intercity trip distribution , 2017 .

[3]  Raja Sekhar Dondapati,et al.  Investigation on Parametric Process Optimization of HCHCR in CNC Turning Machine Using Taguchi Technique , 2018 .

[4]  Armen Zakarian,et al.  Data mining algorithm for manufacturing process control , 2006 .

[5]  Asish Bandyopadhyay,et al.  Performance evaluation in CNC turning of AA6063-T6 alloy using WASPAS approach , 2018, World Journal of Engineering.

[6]  Surendra Kumar Saini,et al.  Optimization of Multi-objective Response during CNC Turning Using Taguchi-fuzzy Application☆ , 2014 .

[7]  Hari Singh,et al.  Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel , 2011, Expert Syst. Appl..

[8]  Raman Kumar,et al.  Optimization of energy consumption response parameters for turning operation using Taguchi method , 2016 .

[9]  V. Durga Prasad Rao,et al.  Multi-objective optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated tool , 2018 .

[10]  Abhishek Kushwaha,et al.  OPTIMIZATION OF CNC PROCESS PARAMETERS ON INCONEL 625 USING RESPONSE SURFACE METHODOLOGY , 2017 .

[11]  H. Akkuş Optimising the effect of cutting parameters on the average surface roughness in a turning process with the Taguchi method , 2018, Materiali in tehnologije.

[12]  Ch. Maheswara Rao,et al.  Optimization of Surface Roughness in CNC Turning Using Taguchi Method and ANOVA , 2016 .

[13]  Hari Vasudevan,et al.  Optimization Of Multi-Performance Characteristics in the Turning Of GFRP(E) Composites using Principle Component Analysis combined with Grey Relational Analysis , 2018 .

[14]  P. Bhanu Prakash,et al.  Application of Taguchi based Grey Method for Multi Aspects Optimization on CNC Turning of AlSi7 Mg , 2018 .

[15]  Asish Bandyopadhyay,et al.  Modeling and optimization of surface roughness and tool vibration in CNC turning of Aluminum alloy using hybrid RSM-WPCA methodology , 2017 .

[16]  Kaushik Kumar,et al.  Optimization of Material Removal Rate During Turning of SAE 1020 Material in CNC Lathe using Taguchi Technique , 2014 .

[17]  K. Arun Vikram,et al.  Evaluation of process parameters using GRA while machining low machinability material in dry and wet conditions , 2018 .

[18]  Hrelja Marko,et al.  Turning Parameters Optimization Using Particle Swarm Optimization , 2014 .

[19]  Suk-Hwan Suh,et al.  Theory and Design of CNC Systems , 2008 .

[20]  P. Senthil,et al.  Application of Grey-Fuzzy Approach for Optimization of CNC Turning Process , 2018 .

[21]  Murat Sarıkaya,et al.  Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25 , 2015 .

[22]  M. Vijay Kumar,et al.  Optimization of Machining Parameters in CNC Turning of Stainless Steel (EN19) By TAGUCHI’S Orthogonal Array Experiments , 2018 .

[23]  Miran Brezocnik,et al.  Multi-objective optimization of the turning process using gravitational search algorithm (GSA) and NSGA-II approach , 2016 .

[24]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[25]  M. Nataraj,et al.  Parametric optimization of CNC turning process for hybrid metal matrix composite , 2017 .

[26]  M. Nataraj,et al.  Optimization of Machining Parameters for CNC Turning of Al/Al2O3 MMC Using RSM Approach , 2018 .

[27]  A. Saravanakumar,et al.  Optimization of CNC Turning Parameters on Aluminum Alloy 6063 using TaguchiRobust Design , 2018 .

[28]  Hari Vasudevan,et al.  Grey Fuzzy Multiobjective Optimization of Process Parameters for CNC Turning of GFRP/Epoxy Composites☆ , 2014 .

[29]  İlhan Asiltürk,et al.  Optimisation of parameters affecting surface roughness of Co28Cr6Mo medical material during CNC lathe machining by using the Taguchi and RSM methods , 2016 .

[30]  Surendra Kumar Saini,et al.  Optimization of Machining Parameters for CNC Turning of Different Materials , 2014 .

[31]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[32]  Laith A. Mohammed,et al.  Optimization of CNC Turning for Aluminum Alloy Using Simulated Annealing Method , 2015 .

[33]  Respatiwulan,et al.  Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production , 2017 .

[34]  Naveen Kumar Nayak Optimization of Cnc Turning Parameters for Al-6061 Using Response Surface Methodology , 2017 .

[35]  Carmita Camposeco-Negrete,et al.  Optimization of cutting parameters using Response Surface Method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum , 2015 .

[36]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[37]  M. Suresh,et al.  Optimisation of cutting parameters in CNC turning of EN-19 using tungsten carbide , 2017, Int. J. Comput. Aided Eng. Technol..

[38]  Andreas Holzinger,et al.  Data Mining with Decision Trees: Theory and Applications , 2015, Online Inf. Rev..

[39]  Soung Hie Kim,et al.  Artificial intelligence approaches to determination of CNC machining parameters in manufacturing: a review , 1998, Artif. Intell. Eng..