Joint state and parameter estimation for a class of cascade systems: Application to a hemodynamic model
暂无分享,去创建一个
Dayan Liu | Chadia Zayane-Aissa | Taous-Meriem Laleg-Kirati | Chadia Zayane-Aissa | T. Laleg‐Kirati | Dayan Liu
[1] Michel Fliess,et al. Analyse non standard du bruit , 2006, ArXiv.
[2] Karl J. Friston,et al. DEM: A variational treatment of dynamic systems , 2008, NeuroImage.
[3] Heinz A. Preisig,et al. Theory and application of the modulating function method—I. Review and theory of the method and theory of the spline-type modulating functions , 1993 .
[4] R. Marino,et al. Global adaptive output-feedback control of nonlinear systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.
[5] Olivier Gibaru,et al. Identification of fractional order systems using modulating functions method , 2013, 2013 American Control Conference.
[6] Qinghua Zhang,et al. Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..
[7] Naoki Miura,et al. A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals , 2004, NeuroImage.
[8] Olivier Faugeras,et al. Using nonlinear models in fMRI data analysis: Model selection and activation detection , 2006, NeuroImage.
[9] Chadia Zayane-Aissa,et al. Estimation of the neuronal activation using fMRI data: An observer-based approach , 2013, 2013 American Control Conference.
[10] Hieu Minh Trinh,et al. State and input simultaneous estimation for a class of nonlinear systems , 2004, Autom..
[11] Olivier Gibaru,et al. Parameters estimation of a noisy sinusoidal signal with time-varying amplitude , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).
[12] G. Besançon. Remarks on nonlinear adaptive observer design , 2000 .
[13] M. Gevers,et al. Stable adaptive observers for nonlinear time-varying systems , 1987 .
[14] Karl J. Friston,et al. Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.
[15] Yeng Chai Soh,et al. High-Gain Observers With Sliding Mode for State and Unknown Input Estimations , 2009, IEEE Transactions on Industrial Electronics.
[16] Vince D. Calhoun,et al. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering , 2011, NeuroImage.
[17] Marvin Shinbrot. On the analysis of linear and nonlinear dynamical systems from transient-response data , 1954 .
[18] T. Westerlund,et al. Remarks on "Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems" , 1980 .
[19] R. Marino,et al. Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems , 1995, IEEE Trans. Autom. Control..
[20] Arthur J. Krener,et al. Linearization by output injection and nonlinear observers , 1983 .
[21] H. Unbehauen,et al. Identification of continuous-time systems , 1991 .
[22] G. Kreisselmeier. Adaptive observers with exponential rate of convergence , 1977 .
[23] Peter C. Young,et al. Direct Identification of Continuous-time Models from Sampled Data: Issues, Basic Solutions and Relevance , 2008 .
[24] R. Buxton,et al. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.