Comparative morphology of the bursal nozzles in acoels (Acoela, Acoelomorpha)

Systematics of the Acoela is particularly difficult because of the paucity of readily discernible morphological features. In other soft‐bodied worms, sclerotized structures, such as copulatory stylets, provide important characters that can be seen in whole mounts, but acoels generally lack such features. Among the few sclerotized structures in acoels are bursal nozzles—tubiform outlets on the seminal bursae that are believed to be conduits (spermatic ducts) through which allosperm are transported to the oocytes. Early classifications of the Acoela used features of the female reproductive system, including bursal nozzles, for distinguishing major groups, but the current system essentially ignores them as too plastic to provide higher‐level distinctions. We used confocal and electron microscopy to further characterize bursal nozzles in five acoel species, and found all composed of actin‐reinforced extensions of stacked, flat mesenchymal cells. In Notocelis gullmarensis, Aphanostoma bruscai, and Daku woorimensis, the nozzle is a stiffened region of the same cells forming the wall of the bursa. By contrast, in Wulguru cuspidata cells forming the nozzle are distinct from those of the bursa. The so‐called bursal cap of A. bruscai and D. woorimensis has small sclerotized disjunct units within it, also composed of stacked, flat, actin‐reinforced cells. The nozzle of W. cuspidata, prominent like that of other convolutid acoels, is relatively complex, its actin‐reinforced cells sandwiched with secretory cells and its base bearing a “sorting apparatus” of egg‐shaped cells that send narrow processes inside the spermatic duct. Cases of sperm inside the nozzle corroborate its assumed role in reproduction. Whereas most nozzles sit at the end of the bursa facing the ovary, in species of Pseudmecynostomum and purportedly in a few other acoels, they sit between the female pore and the bursa, constituting what we call a vaginal nozzle. All bursal nozzles of acoels show a common ground pattern indicating common ancestry, but certain features discerned through electron and confocal microscopy show promise of providing synapomorphies for grouping some species. J. Morphol. © 2006 Wiley‐Liss, Inc.

[1]  S. Tyler,et al.  Ultrastructure of sperms in Acoela (Acoelomorpha) and its concordance with molecular systematics , 2005 .

[2]  S. Tyler,et al.  New tools for resolving phylogenies: a systematic revision of the Convolutidae (Acoelomorpha, Acoela) , 2005 .

[3]  J. Small,et al.  Fluorescent phallotoxins as probes for filamentous actin , 1988, Journal of Muscle Research & Cell Motility.

[4]  J. Baguñá,et al.  The dawn of bilaterian animals: the case of acoelomorph flatworms , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  W. Sterrer,et al.  Musculature and nervous system of Gnathostomula peregrina (Gnathostomulida) shown by phalloidin labeling, immunohistochemistry, and cLSM, and their phylogenetic significance , 2004, Zoomorphology.

[6]  Julian P. S. Smith,et al.  New acoels (Acoela, Acoelomorpha) from North Carolina , 2004 .

[7]  D. A. Doe Ultrastructure of the copulatory organ of Haplopharynx quadristimulus and its phylogenetic significance (Plathelminthes, Haplopharyngida) , 1986, Zoomorphology.

[8]  J. Brüggemann Ultrastructure and formation of the bursa mouthpiece of Philocelis cellata (Plathelminthes, Acoela) , 1985, Hydrobiologia.

[9]  J. Meixner Beitrag zur morphologie und zum system der turbellaria-rhabdocoela: II. Über typhlorhynchus nanus laidlaw und die parasitischen rhabdocölen nebst nachträgen zu den calyptorhynchia , 1926, Zeitschrift für Morphologie und Ökologie der Tiere.

[10]  J. Brüggemann Ultrastructural investigations on the differentiation of genital hard structures in free-living platyhelminths and their phylogenetic significance , 2004, Hydrobiologia.

[11]  D. A. Doe Ultrastructure of the copulatory stylet and accessory spines in Haplopharynx quadristimulus (Turbellaria) , 2004, Hydrobiologia.

[12]  I. Kornfield,et al.  Molecular systematics of the Acoela (Acoelomorpha, Platyhelminthes) and its concordance with morphology. , 2002, Molecular phylogenetics and evolution.

[13]  M. Hooge Evolution of body‐wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora) , 2001, Journal of morphology.

[14]  S. Tyler,et al.  Musculature of Gnathostomula armata Riedl 1971 and Its Ecological Significance , 2001 .

[15]  S. Tyler,et al.  Functional morphology of musculature in the acoelomate worm, Convoluta pulchra (Plathelminthes) , 1999, Zoomorphology.

[16]  R. Demaree,et al.  Microwave fixation: Understanding the variables to achieve rapid reproducible results , 1995, Microscopy research and technique.

[17]  T. G. Karling Anatomy and evolution in Cylindrostomidae (Plathelminthes, Prolecithophora) , 1993 .

[18]  C. Cohen,et al.  Schistosome surface spines are "crystals" of actin , 1982, The Journal of cell biology.

[19]  Anno Faubel Zwei neue interstitielle Arten der Acoela (Turbellaria) von Norwegen , 1977 .

[20]  R. Rieger,et al.  The Proboscis Armature of Turbellaria‐Kalyptorhynchia, a Derivative of the Basement Lamina? , 1975 .

[21]  R. Riedl On the Genus Gnathostomula (Gnathostomulida) , 1971 .

[22]  G. Apelt Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien , 1969, Marine Biology.

[23]  L. Hyman,et al.  The Invertebrates: Platyhelminthes And Rhynchocoela:The Acoelomate Bilateria (Volume-2) , 1951 .