Electron scattering loss in Earth's inner magnetosphere: 1. Dominant physical processes

Pitch angle diffusion rates due to Coulomb collisions and resonant interactions with plasmaspheric hiss, lightning-induced whistlers and anthropogenic VLF transmissions are computed for inner magnetospheric electrons. The bounce-averaged, quasi-linear pitch angle diffusion coefficients are input into a pure pitch angle diffusion equation to obtain L and energy dependent equilibrium distribution functions and precipitation lifetimes. The relative effects of each scattering mechanism are considered as a function of electron energy and L shell. Model calculations accurately describe the enhanced loss rates in the slot region, as well as reduced scattering in the heavily populated inner radiation belt. Predicted electron distribution function calculations in the slot region display a characteristic “top hat” distribution which is supported by observations. Inner zone electron lifetimes based on observed decay rates of the Starfish electron population are in approximate agreement with model predictions.

[1]  R. Thorne,et al.  The cause of storm after effects in the middle latitude D-region , 1975 .

[2]  J. Dungey Loss of Van Allen electrons due to whistlers , 1963 .

[3]  A. Vampola,et al.  Induced precipitation of inner zone electrons, 1. Observations , 1978 .

[4]  R. Anderson,et al.  The significance of VLF transmitters in the precipitation of inner belt electrons , 1981 .

[5]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[6]  U. Inan,et al.  Lightning as an embryonic source of VLF hiss , 1989 .

[7]  Charles F. Kennel,et al.  Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field , 1966 .

[8]  M. Walt,et al.  The influence of the Earth's atmosphere on geomagnetically trapped particles , 1964 .

[9]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[10]  Umran S. Inan,et al.  Nonlinear pitch angle scattering of energetic electrons by coherent VLF waves in the magnetosphere , 1978 .

[11]  A. Korth,et al.  An experimental study of ELF/VLF hiss generation in the Earth's magnetosphere , 1988 .

[12]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[13]  C. Kennel,et al.  Pitch-angle diffusion of radiation belt electrons within the plasmasphere. , 1972 .

[14]  C. Huang,et al.  Ray‐tracing studies and path‐integrated gains of ELF unducted whistler mode waves in the Earth's magnetosphere , 1983 .

[15]  L. Storey,et al.  An investigation of whistling atmospherics , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[16]  R. Thorne,et al.  On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause , 1979 .

[17]  A. Walker Plasma waves in the magnetosphere , 1993 .

[18]  A. Korth,et al.  Generation mechanism of plasmaspheric ELF/VLF hiss: A statistical study from GEOS 1 data , 1993 .

[19]  R. Thorne,et al.  On the origin of plasmaspheric hiss: Ray path integrated amplification , 1983 .

[20]  J. Cornwall Scattering of energetic trapped electrons by very‐low‐frequency waves , 1964 .

[21]  D. Williams,et al.  The quiet time structure of energetic (35–560 keV) radiation belt electrons , 1975 .

[22]  Y. T. Chiu,et al.  An equilibrium model of plasmaspheric composition and density , 1979 .

[23]  R. Thorne,et al.  Assessment of mechanisms for Jovian synchrotron variability associated with comet SL‐9 , 1995 .

[24]  M. Walt,et al.  Physical mechanisms of the inner Van Allen belt , 1976 .

[25]  G. Holman Some recent results in the interpretation of high brightness temperature microwave spike emission , 1982 .

[26]  Umran S. Inan,et al.  Electron precipitation zones around major ground‐based VLF signal sources , 1984 .

[27]  T. Bell,et al.  Magnetospherically reflected whistlers as a source of plasmaspheric hiss , 1992 .

[28]  Charles F. Kennel,et al.  LIMIT ON STABLY TRAPPED PARTICLE FLUXES , 1966 .

[29]  B. C. Edgar,et al.  Precipitation of inner zone electrons by whistler mode waves from the VLF transmitters UMS and NWC , 1981 .

[30]  C. Kennel,et al.  Relativistic electron precipitation during magnetic storm main phase , 1971 .

[31]  R. Thorne,et al.  Equilibrium structure of radiation belt electrons , 1973 .

[32]  R. Horne,et al.  Ground-based evidence of latitude-dependent cyclotron absorption of whistler mode signals originating from VLF transmitters , 1996 .

[33]  A. Vampola VLF transmission induced slot electron precipitation , 1977 .

[34]  Dieter Bilitza,et al.  International reference ionosphere , 1978 .

[35]  C. Russell,et al.  OGO 3 observations of ELF noise in the magnetosphere: 1. Spatial extent and frequency of occurrence , 1969 .

[36]  M. Rees Physics and Chemistry of the Upper Atmosphere , 1989 .

[37]  Richard M. Thorne,et al.  Electron pitch-angle diffusion driven by oblique whistler-mode turbulence , 1971, Journal of Plasma Physics.

[38]  R. Thorne,et al.  Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters , 1998 .

[39]  R. Helliwell,et al.  Whistler-mode emissions on the OGO 1 satellite , 1969 .

[40]  M. Walt,et al.  Loss cone distributions of radiation belt electrons , 1977 .

[41]  C. S. Roberts Pitch‐angle diffusion of electrons in the magnetosphere , 1969 .

[42]  R. Helliwell,et al.  Whistlers and Related Ionospheric Phenomena , 1965 .

[43]  N. Herlofson,et al.  Particle Diffusion in the Radiation Belts , 1962 .