Hypothesis testing with active information

Abstract We develop hypothesis testing for active information — the averaged quantity in the Kullback–Leibler divergence. To our knowledge, this is the first paper to derive exact probabilities of type-I errors for hypothesis testing in the area.

[1]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[2]  Nicholas I. Fisher,et al.  Bump hunting in high-dimensional data , 1999, Stat. Comput..

[3]  George D. Montañez A Unified Model of Complex Specified Information , 2018 .

[4]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[5]  Robert J. Marks,et al.  Conservation of Information in Search: Measuring the Cost of Success , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[6]  Juan Pablo Sáenz,et al.  Mode hunting through active information , 2020, ArXiv.

[7]  J. Dazard,et al.  Unsupervised Bump Hunting Using Principal Components , 2014, 1409.8630.

[8]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[9]  Jean-Eudes Dazard,et al.  Local Sparse Bump Hunting , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[10]  William A. Dembski,et al.  Bernoulli's principle of insufficient reason and conservation of information in computer search , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[11]  D. A. D'iaz-Pach'on,et al.  Generalized active information: extensions to unbounded domains , 2020, BIO-Complexity.