Blind image deblurring via enhanced sparse prior

Abstract. We present an effective blind image deblurring method based on the reweighted L1 norm prior. The prior is motivated by that the traditional L1 norm highly depends on the pixel itself, that is, the larger the pixel value, the greater the penalty. However, the blur reduces the high-frequency components of the clear image, and minimizing the high-frequency part will result in a blur solution or delta function kernel. To overcome this limitation, we employ the reweighted L1 norm and it eliminates this dependence within wisely weighting. The image prior compensates for the degeneration of high intensities and greatly stabilizes the intermediate image estimation process. However, the prior proposed introduces a challenging optimization problem. We develop an efficient optimization scheme to obtain a reliable intermediate image for estimating the blur kernel. Extensive experiments on different kinds of challenging blurry images demonstrate the superiority of our proposed method over the state-of-the-art blind deblurring methods. Moreover, our blind deblurring algorithm is effective in various scenarios, such as natural, text, and low-light images.

[1]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[2]  Mohinder Malhotra Single Image Haze Removal Using Dark Channel Prior , 2016 .

[3]  Xiaochun Cao,et al.  Image Deblurring via Extreme Channels Prior , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Narendra Ahuja,et al.  A Comparative Study for Single Image Blind Deblurring , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Ming-Hsuan Yang,et al.  Deblurring Low-Light Images with Light Streaks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Yipeng Liu,et al.  A Simple Local Minimal Intensity Prior and an Improved Algorithm for Blind Image Deblurring , 2020, IEEE Transactions on Circuits and Systems for Video Technology.

[7]  Truong Q. Nguyen,et al.  An Augmented Lagrangian Method for Total Variation Video Restoration , 2011, IEEE Transactions on Image Processing.

[8]  Xiaochun Cao,et al.  Scene Text Deblurring Using Text-Specific Multiscale Dictionaries , 2015, IEEE Transactions on Image Processing.

[9]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[10]  Ming-Hsuan Yang,et al.  Good Regions to Deblur , 2012, ECCV.

[11]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[13]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Sylvain Paris,et al.  Blur kernel estimation using the radon transform , 2011, CVPR 2011.

[15]  Alan C. Bovik,et al.  A Two-Step Framework for Constructing Blind Image Quality Indices , 2010, IEEE Signal Processing Letters.

[16]  Wen Gao,et al.  Image deblurring using robust sparsity priors , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[17]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[18]  Qiang Wu,et al.  An effective document image deblurring algorithm , 2011, CVPR 2011.

[19]  Hongdong Li,et al.  Deep Stacked Hierarchical Multi-Patch Network for Image Deblurring , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Sylvain Paris,et al.  Handling Noise in Single Image Deblurring Using Directional Filters , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Guixu Zhang,et al.  Blind Image Deblurring With Local Maximum Gradient Prior , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Richard Hartley,et al.  Phase-Only Image Based Kernel Estimation for Single Image Blind Deblurring , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Michal Irani,et al.  Blind Deblurring Using Internal Patch Recurrence , 2014, ECCV.

[26]  Tae Hyun Kim,et al.  Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Christophe Charrier,et al.  Blind Image Quality Assessment: A Natural Scene Statistics Approach in the DCT Domain , 2012, IEEE Transactions on Image Processing.

[28]  Jiri Matas,et al.  DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[29]  Adam Finkelstein,et al.  A no-reference metric for evaluating the quality of motion deblurring , 2013, ACM Trans. Graph..

[30]  Ming-Hsuan Yang,et al.  Learning a Discriminative Prior for Blind Image Deblurring , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[31]  Seungyong Lee,et al.  Fast motion deblurring , 2009, ACM Trans. Graph..

[32]  Bernhard Schölkopf,et al.  Recording and Playback of Camera Shake: Benchmarking Blind Deconvolution with a Real-World Database , 2012, ECCV.

[33]  Andrew Zisserman,et al.  Deblurring shaken and partially saturated images , 2011, ICCV Workshops.

[34]  Deqing Sun,et al.  Deblurring Images via Dark Channel Prior , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Chanho Jung,et al.  Blind Deblurring of Text Images Using a Text-Specific Hybrid Dictionary , 2020, IEEE Transactions on Image Processing.

[36]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[37]  Ming-Hsuan Yang,et al.  Deblurring Face Images with Exemplars , 2014, ECCV.

[38]  Guillermo Sapiro,et al.  Deep Video Deblurring for Hand-Held Cameras , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[40]  Stephen P. Boyd,et al.  Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices , 2003, Proceedings of the 2003 American Control Conference, 2003..

[41]  David Zhang,et al.  Partial Deconvolution With Inaccurate Blur Kernel , 2018, IEEE Transactions on Image Processing.

[42]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[43]  Sunghyun Cho,et al.  Edge-based blur kernel estimation using patch priors , 2013, IEEE International Conference on Computational Photography (ICCP).

[44]  Wangmeng Zuo,et al.  Dark and Bright Channel Prior Embedded Network for Dynamic Scene Deblurring , 2020, IEEE Transactions on Image Processing.

[45]  Ke Chen,et al.  Reweighted sparse subspace clustering , 2015, Comput. Vis. Image Underst..

[46]  Seungyong Lee,et al.  Text Image Deblurring Using Text-Specific Properties , 2012, ECCV.

[47]  Bernhard Schölkopf,et al.  Fast removal of non-uniform camera shake , 2011, 2011 International Conference on Computer Vision.

[48]  Jean Ponce,et al.  Learning a convolutional neural network for non-uniform motion blur removal , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Ian D. Reid,et al.  From Motion Blur to Motion Flow: A Deep Learning Solution for Removing Heterogeneous Motion Blur , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[50]  Yi Wang,et al.  Scale-Recurrent Network for Deep Image Deblurring , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[51]  Deqing Sun,et al.  Blind Image Deblurring Using Dark Channel Prior , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[53]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[54]  Ming-Hsuan Yang,et al.  $L_0$ -Regularized Intensity and Gradient Prior for Deblurring Text Images and Beyond , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Alan C. Bovik,et al.  No-Reference Image Quality Assessment in the Spatial Domain , 2012, IEEE Transactions on Image Processing.