Alternative estimators in logistic regression when the data are collinear

Logistic regression using conditional maximum likelihood estimation has recently gained widespread use. Many of the applications of logistic regression have been in situations in which the independent variables are collinear. It is shown that collinearity among the independent variables seriously effects the conditional maximum likelihood estimator in that the variance of this estimator is inflated in much the same way that collinearity inflates the variance of the least squares estimator in multiple regression. Drawing on the similarities between multiple and logistic regression several alternative estimators, which reduce the effect of the collinearity and are easy to obtain in practice, are suggested and compared in a simulation study.