Counter-ion transport number and membrane potential in working membrane systems.

In this work we use the general space-charge (SC) theory for a combined transport model of fluid and ion through cylindrical nanopores to derive equations for the membrane potential and counter-ion transport numbers. We discuss this approach for ion exchange membranes assuming aqueous domains as interconnected network of cylindrical pores. The transport number calculations from the SC theory are compared with the corresponding ones from the uniform potential (UP) and Teorell-Meyer-Sievers (TMS) models in the case of both zero and non-zero concentration gradient across the membrane and with an applied current density. By using this approach we suggest the optimal conditions for performing membrane potential experiments (i.e. choice of electrolyte and concentration difference) depending on an easily accessible membrane property, namely the volumetric charge density. We also theoretically describe a novel dynamic method to determine in a single experiment the membrane potential and membrane conductivity. To exemplify the use of the dynamic method we report the calculations based on typical operating conditions of the reverse electrodialysis process. The numerical results are presented in terms of the electrical potential difference versus the average pore radius and charge density. The resulting map is a useful tool for a rational design of an effective membrane morphology for a specific electrochemical application.

[1]  Hidetoshi Matsumoto,et al.  Membrane potential across low-water-content charged membranes: Effect of ion pairing. , 2005, The journal of physical chemistry. B.

[2]  A. Narȩbska,et al.  Permselectivity of ion-exchange membranes in operating systems. Irreversible thermodynamics treatment , 1993 .

[3]  J. W. Post,et al.  Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane–solution interface , 2013 .

[4]  K. Meyer,et al.  La perméabilité des membranes. IV. Analyse de la structure de membranes végétales et animales , 1936 .

[5]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[6]  C. Christoforou,et al.  The exclusion-diffusion potential in charged porous membranes , 1986 .

[7]  R. Carbonell,et al.  Interpretation of transport coefficients in Nafion using a parallel pore model , 1992 .

[8]  T. Sata,et al.  Ion Exchange Membranes: Preparation, Characterization, Modification and Application , 2004 .

[9]  J. Post,et al.  Salinity-gradient power : Evaluation of pressure-retarded osmosis and reverse electrodialysis , 2007 .

[10]  K. Meyer,et al.  La perméabilité des membranes I. Théorie de la perméabilité ionique , 1936 .

[11]  Ruben G. Carbonell,et al.  Transport of electrolytes in charged pores: Analysis using the method of spatial averaging , 1989 .

[12]  A. Katchalsky,et al.  Permeability of composite membranes. Part 2.—Parallel elements , 1963 .

[13]  B. Bhushan,et al.  Effect of boundary slip and surface charge on the pressure-driven flow. , 2013, Journal of colloid and interface science.

[14]  A. Katchalsky,et al.  Permeability of composite membranes. Part 3.—Series array of elements , 1963 .

[15]  P. Fiévet,et al.  Evaluation of three methods for the characterisation of the membraneâsolution interface: streaming potential, membrane potential and electrolyte conductivity inside pores , 2000 .

[16]  R. D. Foltz CRC Handbook of Chemistry and Physics:A Ready-Reference Book of Chemical and Physical Data , 2000 .

[17]  A. Katchalsky,et al.  Permeability of composite membranes. Part 1.—Electric current, volume flow and flow of solute through membranes , 1963 .

[18]  S. Koter,et al.  Ions and water transport across charged nafion membranes. Irreversible thermodynamics approach , 1984 .

[19]  F. A. Morrison,et al.  Electrokinetic Energy Conversion in Ultrafine Capillaries , 1965 .

[20]  J. S. Pedersen,et al.  Tailoring Membrane Nanostructure and Charge Density for High Electrokinetic Energy Conversion Efficiency. , 2016, ACS nano.

[21]  Armand Ajdari,et al.  Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  T. Teorell STUDIES ON THE DIFFUSION EFFECT UPON IONIC DISTRIBUTION , 1937, The Journal of general physiology.

[23]  J. C. Fair,et al.  Reverse Electrodialysis in Charged Capillary Membranes , 1971 .

[24]  A. Bentien,et al.  Sulfonated poly(arylene thioether sulfone) cation exchange membranes with improved permselectivity/ion conductivity trade-off , 2016 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  A. Szymczyk,et al.  Influence of steric, electric, and dielectric effects on membrane potential. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[27]  B. Rotenberg,et al.  Pore network model of electrokinetic transport through charged porous media. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  M. Kariduraganavar,et al.  Ion Exchange Membranes: Preparation, Properties, and Applications , 2012 .

[29]  Mark W. Verbrugge,et al.  Ion and Solvent Transport in Ion‐Exchange Membranes I . A Macrohomogeneous Mathematical Model , 1990 .

[30]  J. Anderson,et al.  Experimental Verification of the Space‐Charge Model for Electrokinetics in Charged Microporous Membranes , 1983 .

[31]  R. Lacey Energy by reverse electrodialysis , 1980 .

[32]  M. Murad,et al.  A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: II Computational Validation , 2006 .

[33]  Mukul M. Sharma,et al.  An improved Space-Charge model for flow through charged microporous membranes , 1997 .

[34]  N. Lakshminarayanaiah,et al.  Transport phenomena in membranes , 1969 .

[35]  Theory of fluid slip in charged capillary nanopores , 2016, 1603.09293.

[36]  D. Huang,et al.  The Effect of Hydrodynamic Slip on Membrane-Based Salinity-Gradient-Driven Energy Harvesting. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[37]  Márcio A. Murad,et al.  A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: I Homogenization Analysis , 2006 .

[38]  K. Meyer,et al.  La perméabilité des membranes. II. Essais avec des membranes sélectives artificielles , 1936 .

[39]  A. J. Staverman Non-equilibrium thermodynamics of membrane processes , 1952 .

[40]  Hubertus V. M. Hamelers,et al.  Towards implementation of reverse electrodialysis for power generation from salinity gradients , 2010 .

[41]  P. M. Biesheuvel,et al.  Analysis of electrolyte transport through charged nanopores. , 2015, Physical review. E.

[42]  T. Teorell Studies on the "Diffusion Effect" upon Ionic Distribution. Some Theoretical Considerations. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Cervera,et al.  Ion Size Effects on the Electrokinetic Flow in Nanoporous Membranes Caused by Concentration Gradients , 2003 .

[44]  P. M. Biesheuvel,et al.  Revisiting Morrison and Osterle 1965: the efficiency of membrane-based electrokinetic energy conversion , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  H. Strathmann,et al.  Introduction to Membrane Science and Technology , 2011 .

[46]  J. L. Anderson,et al.  Electroosmosis and electrolyte conductance in charged microcapillaries , 1975 .

[47]  D. Stein,et al.  Slip-enhanced electrokinetic energy conversion in nanofluidic channels , 2008, Nanotechnology.

[48]  A. Szymczyk,et al.  Membrane potential in charged porous membranes , 1999 .

[49]  W. Richard Bowen,et al.  Modelling the performance of membrane nanofiltration - critical assessment and model development , 2002 .

[50]  Yang-Xin Yu,et al.  Theoretical calculation on the membrane potential of charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions , 2006 .

[51]  Eli Ruckenstein,et al.  Electrolyte osmosis through capillaries , 1981 .

[52]  G. J. Harmsen,et al.  Reverse electrodialysis : Performance of a stack with 50 cells on the mixing of sea and river water , 2009 .

[53]  Michele Tedesco,et al.  Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes , 2016 .