Counter-ion transport number and membrane potential in working membrane systems.
暂无分享,去创建一个
Michele Tedesco | Anders Bentien | A. Bentien | J. Catalano | Mette Birch Kristensen | Jacopo Catalano | M. Tedesco | Mette Kristensen
[1] Hidetoshi Matsumoto,et al. Membrane potential across low-water-content charged membranes: Effect of ion pairing. , 2005, The journal of physical chemistry. B.
[2] A. Narȩbska,et al. Permselectivity of ion-exchange membranes in operating systems. Irreversible thermodynamics treatment , 1993 .
[3] J. W. Post,et al. Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane–solution interface , 2013 .
[4] K. Meyer,et al. La perméabilité des membranes. IV. Analyse de la structure de membranes végétales et animales , 1936 .
[5] J. F. Osterle,et al. Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.
[6] C. Christoforou,et al. The exclusion-diffusion potential in charged porous membranes , 1986 .
[7] R. Carbonell,et al. Interpretation of transport coefficients in Nafion using a parallel pore model , 1992 .
[8] T. Sata,et al. Ion Exchange Membranes: Preparation, Characterization, Modification and Application , 2004 .
[9] J. Post,et al. Salinity-gradient power : Evaluation of pressure-retarded osmosis and reverse electrodialysis , 2007 .
[10] K. Meyer,et al. La perméabilité des membranes I. Théorie de la perméabilité ionique , 1936 .
[11] Ruben G. Carbonell,et al. Transport of electrolytes in charged pores: Analysis using the method of spatial averaging , 1989 .
[12] A. Katchalsky,et al. Permeability of composite membranes. Part 2.—Parallel elements , 1963 .
[13] B. Bhushan,et al. Effect of boundary slip and surface charge on the pressure-driven flow. , 2013, Journal of colloid and interface science.
[14] A. Katchalsky,et al. Permeability of composite membranes. Part 3.—Series array of elements , 1963 .
[15] P. Fiévet,et al. Evaluation of three methods for the characterisation of the membraneâsolution interface: streaming potential, membrane potential and electrolyte conductivity inside pores , 2000 .
[16] R. D. Foltz. CRC Handbook of Chemistry and Physics:A Ready-Reference Book of Chemical and Physical Data , 2000 .
[17] A. Katchalsky,et al. Permeability of composite membranes. Part 1.—Electric current, volume flow and flow of solute through membranes , 1963 .
[18] S. Koter,et al. Ions and water transport across charged nafion membranes. Irreversible thermodynamics approach , 1984 .
[19] F. A. Morrison,et al. Electrokinetic Energy Conversion in Ultrafine Capillaries , 1965 .
[20] J. S. Pedersen,et al. Tailoring Membrane Nanostructure and Charge Density for High Electrokinetic Energy Conversion Efficiency. , 2016, ACS nano.
[21] Armand Ajdari,et al. Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] T. Teorell. STUDIES ON THE DIFFUSION EFFECT UPON IONIC DISTRIBUTION , 1937, The Journal of general physiology.
[23] J. C. Fair,et al. Reverse Electrodialysis in Charged Capillary Membranes , 1971 .
[24] A. Bentien,et al. Sulfonated poly(arylene thioether sulfone) cation exchange membranes with improved permselectivity/ion conductivity trade-off , 2016 .
[25] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[26] A. Szymczyk,et al. Influence of steric, electric, and dielectric effects on membrane potential. , 2008, Langmuir : the ACS journal of surfaces and colloids.
[27] B. Rotenberg,et al. Pore network model of electrokinetic transport through charged porous media. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] M. Kariduraganavar,et al. Ion Exchange Membranes: Preparation, Properties, and Applications , 2012 .
[29] Mark W. Verbrugge,et al. Ion and Solvent Transport in Ion‐Exchange Membranes I . A Macrohomogeneous Mathematical Model , 1990 .
[30] J. Anderson,et al. Experimental Verification of the Space‐Charge Model for Electrokinetics in Charged Microporous Membranes , 1983 .
[31] R. Lacey. Energy by reverse electrodialysis , 1980 .
[32] M. Murad,et al. A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: II Computational Validation , 2006 .
[33] Mukul M. Sharma,et al. An improved Space-Charge model for flow through charged microporous membranes , 1997 .
[34] N. Lakshminarayanaiah,et al. Transport phenomena in membranes , 1969 .
[35] Theory of fluid slip in charged capillary nanopores , 2016, 1603.09293.
[36] D. Huang,et al. The Effect of Hydrodynamic Slip on Membrane-Based Salinity-Gradient-Driven Energy Harvesting. , 2016, Langmuir : the ACS journal of surfaces and colloids.
[37] Márcio A. Murad,et al. A Two-Scale Model for Coupled Electro-Chemo-Mechanical Phenomena and Onsager’s Reciprocity Relations in Expansive Clays: I Homogenization Analysis , 2006 .
[38] K. Meyer,et al. La perméabilité des membranes. II. Essais avec des membranes sélectives artificielles , 1936 .
[39] A. J. Staverman. Non-equilibrium thermodynamics of membrane processes , 1952 .
[40] Hubertus V. M. Hamelers,et al. Towards implementation of reverse electrodialysis for power generation from salinity gradients , 2010 .
[41] P. M. Biesheuvel,et al. Analysis of electrolyte transport through charged nanopores. , 2015, Physical review. E.
[42] T. Teorell. Studies on the "Diffusion Effect" upon Ionic Distribution. Some Theoretical Considerations. , 1935, Proceedings of the National Academy of Sciences of the United States of America.
[43] J. Cervera,et al. Ion Size Effects on the Electrokinetic Flow in Nanoporous Membranes Caused by Concentration Gradients , 2003 .
[44] P. M. Biesheuvel,et al. Revisiting Morrison and Osterle 1965: the efficiency of membrane-based electrokinetic energy conversion , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.
[45] H. Strathmann,et al. Introduction to Membrane Science and Technology , 2011 .
[46] J. L. Anderson,et al. Electroosmosis and electrolyte conductance in charged microcapillaries , 1975 .
[47] D. Stein,et al. Slip-enhanced electrokinetic energy conversion in nanofluidic channels , 2008, Nanotechnology.
[48] A. Szymczyk,et al. Membrane potential in charged porous membranes , 1999 .
[49] W. Richard Bowen,et al. Modelling the performance of membrane nanofiltration - critical assessment and model development , 2002 .
[50] Yang-Xin Yu,et al. Theoretical calculation on the membrane potential of charged porous membranes in 1-1, 1-2, 2-1 and 2-2 electrolyte solutions , 2006 .
[51] Eli Ruckenstein,et al. Electrolyte osmosis through capillaries , 1981 .
[52] G. J. Harmsen,et al. Reverse electrodialysis : Performance of a stack with 50 cells on the mixing of sea and river water , 2009 .
[53] Michele Tedesco,et al. Nernst-Planck transport theory for (reverse) electrodialysis: I. Effect of co-ion transport through the membranes , 2016 .