Traps for reflected Brownian motion

Consider an open set , d ≥ 2, and a closed ball . Let denote the expectation of the hitting time of B for reflected Brownian motion in D starting from x ∈ D. We say that D is a trap domain if . A domain D is not a trap domain if and only if the reflecting Brownian motion in D is uniformly ergodic. We fully characterize the simply connected planar trap domains using a geometric condition and give a number of (less complete) results for d > 2.

[1]  R. Bañuelos Intrinsic ultracontractivity and eigenfunction estimates for Schrodinger operators , 1991 .

[2]  M. Fukushima A construction of reflecting barrier Brownian motions for bounded domains , 1967 .

[3]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[4]  Zhen-Qing Chen On reflecting diffusion processes and Skorokhod decompositions , 1993 .

[5]  Barry Simon,et al.  The essential spectrum of Neumann Laplacians on some bounded singular domains , 1991 .

[6]  Richard F. Bass,et al.  Fiber Brownian motion and the `hot spots''problem Duke Math , 2000 .

[7]  J. Baxter,et al.  Weak limits of stopped diffusions , 1986 .

[8]  C. Pommerenke Boundary Behaviour of Conformal Maps , 1992 .

[9]  Ruth J. Williams,et al.  Reflecting Brownian motions: Quasimartingales and strong Caccioppoli sets , 1993 .

[10]  Peter March,et al.  A Fleming–Viot Particle Representation¶of the Dirichlet Laplacian , 2000 .

[11]  On Brownian Excursions in Lipschitz Domains Part II. Local Asymptotic Distributions , 1989 .

[12]  Zhen-Qing Chen Reflecting Brownian motions and a deletion result for Sobolev spaces of order (1, 2) , 1996, Potential Analysis.

[13]  W. D. Evans,et al.  Sobolev Embeddings for Generalized Ridged Domains , 1987 .

[14]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[15]  Richard F. Bass,et al.  Some Potential Theory for Reflecting Brownian Motion in Holder and Lipschitz Domains , 1991 .

[16]  R. Bass,et al.  Uniqueness for reflecting Brownian motion in lip domains , 2005 .

[17]  A. Friedman Foundations of modern analysis , 1970 .

[18]  B. Simon,et al.  Spectral properties of Neumann Laplacian of horns , 1992 .

[19]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[20]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[21]  Burgess Davis Intrinsic ultracontractivity and the Dirichlet Laplacian , 1991 .

[22]  K. Burdzy,et al.  On the “Hot Spots” Conjecture of J. Rauch , 1999 .

[23]  K. Burdzy,et al.  WEAK CONVERGENCE OF REFLECTING BROWNIAN MOTIONS , 1998 .

[24]  Weak Convergence of Reflected Brownian Motions , 1998 .

[25]  R. Bass,et al.  Lifetimes of conditioned diffusions , 1992 .

[26]  Barry Simon,et al.  Ultracontractivity and the Heat Kernel for Schrijdinger Operators and Dirichlet Laplacians , 1987 .

[27]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[28]  D. Khoshnevisan,et al.  BROWNIAN MOTION IN A BROWNIAN CRACK , 1998 .

[29]  K. Burdzy,et al.  Comparison of potential theoretic properties of rough domains , 2006 .

[30]  D. Stegenga,et al.  Hölder domains and Poincaré domains , 1990 .

[31]  B. Davis,et al.  A geometrical characterization of intrinsic ultracontractivity for planar domains with boundaries given by the graphs of functions , 1992 .

[32]  Carlos E. Kenig,et al.  Boundary behavior of harmonic functions in non-tangentially accessible domains , 1982 .