Continuum backstepping control algorithms in partial differential equation orientation : a review

The continuum backstepping (C–BKST) control algorithm cooperated with boundary control approaches is proposed for distributed parameter systems (DPSs) modeled in partial differential equations (PDEs). The algorithm based on the Volterra transformation is robust, inverse optimal, and potential for explicit exact control laws and exact solutions of closed-loop systems. The C–BKST control algorithm is novel and can be combined with the achievements of the observer theory and the adaptive control theory to extend its application fields. The basic principles and design procedures of the algorithm are introduced in this paper. The recent development of this algorithm is concluded, covering the aspects of parabolic PDEs, hyperbolic PDEs, complex PDEs, and nonlinear PDEs. Finally the main characteristics of the algorithm are summarized, and the development direction of the algorithm is discussed.

[1]  Weijiu Liu,et al.  Boundary Feedback Stabilization of an Unstable Heat Equation , 2003, SIAM J. Control. Optim..

[2]  Miroslav Krstic,et al.  Motion Planning and Tracking for Tip Displacement and Deflection Angle for Flexible Beams , 2009 .

[3]  Z. Luo Direct strain feedback control of flexible robot arms: new theoretical and experimental results , 1993, IEEE Trans. Autom. Control..

[4]  Miroslav Krstic,et al.  Boundary Observer for Output-Feedback Stabilization of Thermal-Fluid Convection Loop , 2010, IEEE Transactions on Control Systems Technology.

[5]  W. Liuy Boundary feedback stabilization of homogeneous equilibria in unstable fluid mixtures , 2007 .

[6]  Miroslav Krstic,et al.  Dead-time compensation for wave/string PDEs , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[7]  Miroslav Krstic,et al.  Motion planning and trajectory tracking for three-dimensional Poiseuille flow , 2009, Journal of Fluid Mechanics.

[8]  Nikolaos Bekiaris-Liberis,et al.  Delay-adaptive feedback for linear feedforward systems , 2010, ACC 2010.

[9]  Wei Guo,et al.  Parameter estimation and stabilisation for a one-dimensional wave equation with boundary output constant disturbance and non-collocated control , 2011, Int. J. Control.

[10]  Shuxia Tang,et al.  State and output feedback boundary control for a coupled PDE-ODE system , 2011, Syst. Control. Lett..

[11]  Y. Sakawa Solution of an optimal control problem in a distributed-parameter system , 1964 .

[12]  R. Curtain,et al.  The Infinite-Dimensional Riccati Equation for Systems Defined by Evolution Operators , 1976 .

[13]  Miroslav Krstic,et al.  Compensating the distributed effect of a wave PDE in the actuation or sensing path of MIMO LTI systems , 2010, Syst. Control. Lett..

[14]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part II: Estimation-based designs , 2007, Autom..

[15]  Miroslav Krstic,et al.  Control of PDE-ODE cascades with Neumann interconnections , 2010, J. Frankl. Inst..

[16]  Miroslav Krstic,et al.  Lyapunov Adaptive Boundary Control for Parabolic PDEs with Spatially Varying Coefficients , 2006, 2006 American Control Conference.

[17]  Miroslav Krstic,et al.  Input Delay Compensation for Forward Complete and Strict-Feedforward Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[18]  P. Wang,et al.  Asymptotic stability of distributed parameter systems with feedback controls , 1966 .

[19]  J. Lions,et al.  THE OPTIMAL CONTROL OF DISTRIBUTED SYSTEMS , 1973 .

[20]  Miroslav Krstic,et al.  Control of 1-D parabolic PDEs with Volterra nonlinearities, Part I: Design , 2008, Autom..

[21]  Miroslav Krstic,et al.  Compensating a string PDE in the actuation or sensing path of an unstable ODE , 2009, 2009 American Control Conference.

[22]  M. Krstić Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch , 2008 .

[23]  Miroslav Krstic,et al.  Adaptive Boundary Control for Unstable Parabolic PDEs—Part I: Lyapunov Design , 2008, IEEE Transactions on Automatic Control.

[24]  Shuzhi Sam Ge,et al.  Boundary Control of a Coupled Nonlinear Flexible Marine Riser , 2010, IEEE Transactions on Control Systems Technology.

[25]  Ö. Morgül Orientation and stabilization of a flexible beam attached to a rigid body: planar motion , 1991 .

[26]  Ramon Miranda,et al.  Observer design for a class of parabolic PDE via sliding modes and backstepping , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[27]  Shuxia Tang,et al.  Stabilization of a coupled PDE-ODE system by boundary control , 2010, 49th IEEE Conference on Decision and Control (CDC).

[28]  Miroslav Krstic,et al.  Control of 1D parabolic PDEs with Volterra nonlinearities, Part II: Analysis , 2008, Autom..

[29]  Miroslav Krstic Systematization of approaches to adaptive boundary stabilization of PDEs , 2006 .

[30]  Shuzhi Sam Ge,et al.  Boundary control of a vibrating string under unknown time-varying disturbance , 2010, CDC.

[31]  Robert H. Kadlec,et al.  Optimal operation of a tubular chemical reactor , 1971 .

[32]  Nikolaos Bekiaris-Liberis,et al.  Compensation of infinite-dimensional input dynamics , 2010, Annu. Rev. Control..

[33]  Miroslav Krstic Optimal Adaptive Control—Contradiction in Terms or a Matter of Choosing the Right Cost Functional? , 2008, IEEE Transactions on Automatic Control.

[34]  Miroslav Krstic,et al.  Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays , 2007, CDC.

[35]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[36]  Miroslav Krstic,et al.  Magnetohydrodynamic state estimation with boundary sensors , 2008, Autom..

[37]  Andreas Kugi,et al.  Tracking control for boundary controlled parabolic PDEs with varying parameters: Combining backstepping and differential flatness , 2009, Autom..

[38]  W. Gawronski Dynamics and control of structures : a modal approach , 1998 .

[39]  M. Krstić,et al.  Backstepping Boundary Controllers and Observers for the Slender Timoshenko Beam: Part I - Design , 2006, 2006 American Control Conference.

[40]  M. Krstić Delay Compensation for Nonlinear, Adaptive, and PDE Systems , 2009 .

[41]  M. Krstic,et al.  Backstepping Boundary Controllers and Observers for the Slender Timoshenko Beam: Part II---Stability and Simulations , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[42]  Nikolaos Bekiaris-Liberis,et al.  Stabilization of linear strict-feedback systems with delayed integrators , 2010, ACC 2010.

[43]  Fumitoshi Matsuno,et al.  Passivity and PDS control of flexible mechanical systems on the basis of distributed parameter system , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[44]  J. R. Hewit,et al.  The Optimal Control of the Temperature Profile within a Heat Conduction System , 1974 .

[45]  Alan S. Foss,et al.  Experimental and computational studies of the dynamics of a fixed bed chemical reactor , 1970 .

[46]  Christopher D. Rahn,et al.  Mechatronic control of distributed noise and vibration , 2001 .

[47]  Radhakant Padhi,et al.  An account of chronological developments in control of distributed parameter systems , 2009, Annu. Rev. Control..

[48]  Miroslav Krstic,et al.  Output Feedback Boundary Control of a Ginzburg–Landau Model of Vortex Shedding , 2007, IEEE Transactions on Automatic Control.

[49]  Miroslav Krstic,et al.  Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback , 2009, IEEE Transactions on Automatic Control.

[50]  Miroslav Krstic,et al.  A Closed-Form Full-State Feedback Controller for Stabilization of 3D Magnetohydrodynamic Channel Flow , 2009 .

[51]  Miroslav Krstic,et al.  Compensating the Distributed Effect of Diffusion and Counter-Convection in Multi-Input and Multi-Output LTI Systems , 2011, IEEE Transactions on Automatic Control.

[52]  Bao-Zhu Guo,et al.  Arbitrary decay rate for two connected strings with joint anti-damping by boundary output feedback , 2010, Autom..

[53]  Andrey Smyshlyaev,et al.  Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary , 2009, ACC.

[54]  Miroslav Krstic,et al.  Adaptive identification of two unstable PDEs with boundary sensing and actuation , 2009 .

[55]  Feng-Fei Jin,et al.  Backstepping approach to the arbitrary decay rate for Euler–Bernoulli beam under boundary feedback , 2010, Int. J. Control.

[56]  Miroslav Krstic,et al.  Stabilization of linearized 2D magnetohydrodynamic channel flow by backstepping boundary control , 2008, Syst. Control. Lett..

[57]  Miroslav Krstic,et al.  Adaptive control of PDES , 2007 .

[58]  Miroslav Krstic,et al.  On control design for PDEs with space-dependent diffusivity or time-dependent reactivity , 2005, Autom..

[59]  Miroslav Krstic,et al.  Nonlinear Control of the Viscous Burgers Equation: Trajectory Generation, Tracking, and Observer Design , 2009 .

[60]  J. Beck Nonlinear estimation applied to the nonlinear inverse heat conduction problem , 1970 .

[61]  Miroslav Krstic,et al.  Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations , 2004, IEEE Transactions on Automatic Control.

[62]  M. Krstic Lyapunov Stability of Linear Predictor Feedback for Time-Varying Input Delay , 2010, IEEE Trans. Autom. Control..

[63]  Jian Li,et al.  Adaptive control of the ODE systems with uncertain diffusion-dominated actuator dynamics , 2012, Int. J. Control.

[64]  Miroslav Krstic Control of an unstable reaction-diffusion PDE with long input delay , 2009, CDC.

[65]  Miroslav Krstic,et al.  Boundary Stabilization of a 1-D Wave Equation with In-Domain Antidamping , 2010, SIAM J. Control. Optim..

[66]  Andrey Smyshlyaev,et al.  Adaptive Control of Parabolic PDEs , 2010 .

[67]  Wei Guo,et al.  Stabilization and regulator design for a one‐dimensional unstable wave equation with input harmonic disturbance , 2013 .

[68]  M. Krstić,et al.  Backstepping observers for a class of parabolic PDEs , 2005, Syst. Control. Lett..

[69]  Miroslav Krstic,et al.  Further Results on Stabilization of Shock-Like Equilibria of the Viscous Burgers PDE , 2010, IEEE Transactions on Automatic Control.

[70]  Bao-Zhu Guo,et al.  Parameter estimation and stabilization for a wave equation with boundary output harmonic disturbance and non-collocated control , 2011 .

[71]  M. Ikeda,et al.  Stabilization of Linear Systems with Delay , 1977 .

[72]  Miroslav Krstic,et al.  Control of a Tip-Force Destabilized Shear Beam by Observer-Based Boundary Feedback , 2008, SIAM J. Control. Optim..

[73]  Miroslav Krstic,et al.  Boundary Controllers and Observers for the Linearized Schrödinger Equation , 2011, SIAM J. Control. Optim..

[74]  Miroslav Krstic,et al.  Lyapunov stability of linear predictor feedback for distributed input delays , 2010, 49th IEEE Conference on Decision and Control (CDC).

[75]  Miroslav Krstic,et al.  Explicit integral operator feedback for local stabilization of nonlinear thermal convection loop PDEs , 2006, Syst. Control. Lett..

[76]  Miroslav Krstic,et al.  Nonlinear Stabilization of Shock-Like Unstable Equilibria in the Viscous Burgers PDE , 2008, IEEE Transactions on Automatic Control.

[77]  Miroslav Krstic,et al.  A Closed-Form Feedback Controller for Stabilization of the Linearized 2-D Navier–Stokes Poiseuille System , 2007, IEEE Transactions on Automatic Control.

[78]  Miroslav Krstic,et al.  Compensating actuator and sensor dynamics governed by diffusion PDEs , 2009, Syst. Control. Lett..

[79]  Delphine Bresch-Pietri,et al.  Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay $ $ , 2010, IEEE Transactions on Automatic Control.

[80]  M. Krstic,et al.  Output-Feedback Adaptive Control for Parabolic PDEs with Spatially Varying Coefficients , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[81]  Delphine Bresch-Pietri,et al.  Adaptive trajectory tracking despite unknown input delay and plant parameters , 2009, Autom..

[82]  Miroslav Krstic,et al.  Output-feedback stabilization of an unstable wave equation , 2008, Autom..

[83]  S. Ge,et al.  Boundary control of a flexible marine riser with vessel dynamics , 2010, ACC 2010.

[84]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part III: Output feedback examples with swapping identifiers , 2007, Autom..

[85]  Wu-Chung Su,et al.  Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties , 2011, Autom..

[86]  Wei Guo,et al.  The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control , 2009, Autom..

[87]  Miroslav Krstic On compensating long actuator delays in nonlinear control , 2008 .