The Classical Theory

Publisher Summary This chapter outlines the theoretical framework for the most commonly used theory of nucleation—the classical theory. Phase transformations in the region of metastability are initiated within the original phase by the nucleation of the small regions of the new phase, which then grow to macroscopic dimensions. The nucleation barrier arises from the energy penalty for creating an interface between the cluster and the original phase. If the phase transition is thermodynamically favored, sufficiently large clusters of the new phase must have a free energy lower than the same atoms retaining the configuration of the original phase. However, the atoms in the region of the interface between the original and new phases are in a higher energy state than they would have in the two macroscopic phases. Fluctuations are not limited to the metastable region; they also occur in systems in equilibrium. However, only under metastable conditions there is an extended range of stability for fluctuations combined with a characteristic energy barrier to give the distinctive phenomena of nucleation.

[1]  Y. Viisanen,et al.  Measurement of the molecular content of binary nuclei. Use of the nucleation rate surface for ethanol–hexanol , 1993 .

[2]  F. C. Goodrich Nucleation rates and the kinetics of particle growth I. The pure birth process , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  R. Falster,et al.  Coupled-flux nucleation modeling of oxygen precipitation in silicon , 2000 .

[4]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[5]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[6]  E. Ruckenstein,et al.  A kinetic theory of nucleation in liquids , 1990 .

[7]  David T Wu,et al.  Kinetic extensions of the nucleation theorem , 2003 .

[8]  J. Katz,et al.  A Kinetic Approach to Homogeneous Nucleation Theory , 2007 .

[9]  Kenneth F. Kelton,et al.  Transient nucleation in condensed systems , 1983 .

[10]  J. E. Moyal Stochastic Processes and Statistical Physics , 1949 .

[11]  J. L. Katz,et al.  A kinetic approach to nucleation in condensed systems , 1978 .

[12]  F. Frank,et al.  On the theory of polymer crystallization , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[13]  K. Kelton,et al.  Calculation of macroscopic growth rates from nucleation data , 1994 .

[14]  K F Kelton,et al.  First x-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. , 2003, Physical review letters.

[15]  M. Volmer,et al.  Keimbildung in übersättigten Gebilden , 1926 .

[16]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[17]  Bernie D. Shizgal,et al.  Time dependent nucleation , 1989 .

[18]  E. Ruckenstein,et al.  A kinetic approach to the theory of nucleation in gases , 1991 .

[19]  Y. Viisanen,et al.  Measurement of the molecular content of binary nuclei. II. Use of the nucleation rate surface for water–ethanol , 1994 .

[20]  C. H. Yang,et al.  Theory of homogeneous nucleation: A chemical kinetic view , 1986 .

[21]  C. Lupis Chemical thermodynamics of materials , 1983 .

[22]  David Turnbull,et al.  Rate of Nucleation in Condensed Systems , 1949 .

[23]  Y. Rabin,et al.  Time-dependent effects in nucleation near the critical point , 1984 .

[24]  S. H. Bauer,et al.  Homogeneous nucleation in metal vapors. 5. A self-consistent kinetic model , 1977 .

[25]  J. Katz,et al.  Nucleation theory without Maxwell demons , 1977 .

[26]  I. Bizjak,et al.  Measurement of branching fractions for B-->eta(c)K(*) decays. , 2002, Physical review letters.

[27]  R. Falster,et al.  Oxygen precipitation in silicon: Experimental studies and theoretical investigations within the classical theory of nucleation , 1999 .

[28]  E. Ruckenstein,et al.  Homogeneous nucleation in gases: A three‐dimensional Fokker–Planck equation for evaporation from clusters , 1991 .

[29]  V. Halpern,et al.  Surface diffusion capture in nucleation theory , 1976 .

[30]  Dimo Kashchiev,et al.  Nucleation : basic theory with applications , 2000 .

[31]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[32]  R. Tolman The Effect of Droplet Size on Surface Tension , 1949 .

[33]  H. Reiss,et al.  Homogeneous nucleation rates for water , 1993 .

[34]  D. Kashchiev On the relation between nucleation work, nucleus size, and nucleation rate , 1982 .

[35]  A. L. Greer,et al.  Nucleation in Lithium Disilicate Glass: A Test of Classical Theory by Quantitative Modeling , 1991 .

[36]  McGraw,et al.  Scaling properties of the critical nucleus in classical and molecular-based theories of vapor-liquid nucleation. , 1996, Physical review letters.

[37]  F. C. Goodrich Nucleation rates and the kinetics of particle growth II. The birth and death process , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  D. Oxtoby,et al.  A general relation between the nucleation work and the size of the nucleus in multicomponent nucleation , 1994 .

[39]  E. Ruckenstein,et al.  A kinetic treatment of heterogeneous nucleation , 1992 .

[40]  J. Frankel Kinetic theory of liquids , 1946 .

[41]  C. Wilcox,et al.  Estimation of homogeneous nucleation flux via a kinetic model , 1991 .

[42]  M. Yacaman,et al.  Crystal-Quasicrystal transitions , 1993 .

[43]  L. Farkas Keimbildungsgeschwindigkeit in übersättigten Dämpfen , 1927 .

[44]  J. Frenkel Statistical Theory of Condensation Phenomena , 1939 .