Gauss Composition and Generalizations

We discuss several higher analogues of Gauss composition and consider their potential algorithmic applications.

[1]  H. Davenport,et al.  On the density of discriminants of cubic fields. II , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[3]  C. L. Siegel The Average Measure of Quadratic Forms With Given Determinant and Signature , 1944 .

[4]  Karim Belabas,et al.  A fast algorithm to compute cubic fields , 1997, Math. Comput..

[5]  John Cremona,et al.  ADVANCED TOPICS IN COMPUTATIONAL NUMBER THEORY (Graduate Texts in Mathematics 193) , 2001 .

[6]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[7]  Mikio Sato,et al.  A classification of irreducible prehomogeneous vector spaces and their relative invariants , 1977, Nagoya Mathematical Journal.

[8]  Duncan A. Buell,et al.  Binary Quadratic Forms: Classical Theory and Modern Computations , 1989 .

[9]  Manjul Bhargava,et al.  Higher composition laws , 2001 .

[10]  Henri Cohen,et al.  Advanced topics in computational number theory , 2000 .

[11]  A. Seidenberg A NEW DECISION METHOD FOR ELEMENTARY ALGEBRA , 1954 .

[12]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[13]  G. B. Mathews,et al.  On The Reduction of Arithmetical Binary Cubics which have a Negative Determinant , 1912 .

[14]  Duncan A. Buell,et al.  Binary Quadratic Forms: Classical Theory and Modern Computations , 1989 .

[15]  David J. Wright,et al.  Prehomogeneous vector spaces and field extensions , 1992 .