Coexisting attractors and circuit implementation of a new 4D chaotic system with two equilibria

Abstract This letter proposes a new 4D autonomous chaotic system characterized by the abundant coexisting attractors and a simple mathematical description. The new system which is constructed from the Sprott B system is dissipative, symmetric, chaotic and has two unstable equilibria. For a given set of parameters, butterfly attractors are emerged from the system. These butterfly attractors will be broken into a pair of symmetric strange attractors with the variation of the parameters. A variety of coexisting attractors are spotted in the system including six periodic attractors, four periodic attractors with two chaotic attractors, two periodic attractors with three chaotic attractors, two periodic attractors with two chaotic attractors, four periodic attractors, etc. Finally, the system is established via an electronic circuit which can physically confirm the complex dynamics of the system.

[1]  Christos Volos,et al.  Coexistence of hidden chaotic attractors in a novel no-equilibrium system , 2017 .

[2]  Julien Clinton Sprott,et al.  Multistability in a Butterfly Flow , 2013, Int. J. Bifurc. Chaos.

[3]  Feng Liu,et al.  Generation of Multi-wing Chaotic attractors from a Lorenz-like System , 2013, Int. J. Bifurc. Chaos.

[4]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[5]  Akif Akgul,et al.  Chaos-based engineering applications with a 3D chaotic system without equilibrium points , 2015, Nonlinear Dynamics.

[6]  Jacques Kengne,et al.  Dynamical analysis of a simple autonomous jerk system with multiple attractors , 2016 .

[7]  Qiang Lai,et al.  Coexisting attractors generated from a new 4D smooth chaotic system , 2016 .

[8]  Julien Clinton Sprott,et al.  Constructing chaotic systems with conditional symmetry , 2017 .

[9]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[10]  Z. Njitacke Tabekoueng,et al.  Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit. , 2015, Chaos.

[11]  B. Bao,et al.  Multistability in Chua's circuit with two stable node-foci. , 2016, Chaos.

[12]  Nikolay V. Kuznetsov,et al.  Looking More Closely at the Rabinovich-Fabrikant System , 2015, Int. J. Bifurc. Chaos.

[13]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[14]  Tomohisa Asai,et al.  Auditory multistability and neurotransmitter concentrations in the human brain , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[15]  Guangyi Wang,et al.  Coexisting attractors in a memcapacitor-based chaotic oscillator , 2016 .

[16]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[17]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[18]  Qiang Lai,et al.  Generating Multiple Chaotic Attractors from Sprott B System , 2016, Int. J. Bifurc. Chaos.

[19]  U. Feudel,et al.  Control of multistability , 2014 .

[20]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Leipnik,et al.  Double strange attractors in rigid body motion with linear feedback control , 1981 .

[22]  Viet-Thanh Pham,et al.  Synchronization and circuit design of a chaotic system with coexisting hidden attractors , 2015 .

[23]  A. Njah,et al.  A 5D hyperchaotic Sprott B system with coexisting hidden attractors , 2016 .

[24]  M. Yao,et al.  Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic Rabinovich system , 2015 .

[25]  Qiang Lai,et al.  Research on a new 3D autonomous chaotic system with coexisting attractors , 2016 .

[26]  Amin Zarei,et al.  Complex dynamics in a 5-D hyper-chaotic attractor with four-wing, one equilibrium and multiple chaotic attractors , 2015 .

[27]  Julien Clinton Sprott,et al.  Multistability in the Lorenz System: A Broken Butterfly , 2014, Int. J. Bifurc. Chaos.

[28]  Julien Clinton Sprott,et al.  Recent new examples of hidden attractors , 2015 .

[29]  曹晖,et al.  A new four-dimensional hyperchaotic Lorenz system and its adaptive control , 2011 .