Modulations in the Human Auditory Cortex Neural Representations of Complex Temporal

[1]  S. Shamma,et al.  Spectro-temporal modulation transfer functions and speech intelligibility. , 1999, The Journal of the Acoustical Society of America.

[2]  N. Viemeister Temporal modulation transfer functions based upon modulation thresholds. , 1979, The Journal of the Acoustical Society of America.

[3]  N. Viemeister,et al.  Temporal integration and multiple looks. , 1991, The Journal of the Acoustical Society of America.

[4]  David Poeppel,et al.  The analysis of speech in different temporal integration windows: cerebral lateralization as 'asymmetric sampling in time' , 2003, Speech Commun..

[5]  T. Dau,et al.  Spectro-temporal processing in the envelope-frequency domain. , 2002, The Journal of the Acoustical Society of America.

[6]  D. Pisoni,et al.  Speech perception without traditional speech cues. , 1981, Science.

[7]  E. de Boer,et al.  Auditory Time Constants: A Paradox? , 1985 .

[8]  Daniel Bendor,et al.  Differential neural coding of acoustic flutter within primate auditory cortex , 2007, Nature Neuroscience.

[9]  Patrick Chauvel,et al.  Temporal envelope processing in the human left and right auditory cortices. , 2004, Cerebral cortex.

[10]  Christo Pantev,et al.  Auditory steady-state responses reveal amplitude modulation gap detection thresholds. , 2004, The Journal of the Acoustical Society of America.

[11]  Terence W. Picton,et al.  Temporal integration in the human auditory cortex as represented by the development of the steady-state magnetic field , 2002, Hearing Research.

[12]  C E Schreiner,et al.  Neural processing of amplitude-modulated sounds. , 2004, Physiological reviews.

[13]  C Pantev,et al.  A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. , 2000, The Journal of the Acoustical Society of America.

[14]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[15]  B. Moore An Introduction to the Psychology of Hearing , 1977 .

[16]  Gary G. R. Green,et al.  Spatiotemporal reconstruction of the auditory steady-state response to frequency modulation using magnetoencephalography , 2010, NeuroImage.

[17]  Fan-Gang Zeng,et al.  Speech recognition with amplitude and frequency modulations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Steven Greenberg,et al.  Temporal properties of spontaneous speech - a syllable-centric perspective , 2003, J. Phonetics.

[19]  Xiaoqin Wang,et al.  Cortical processing of temporal modulations , 2003, Speech Commun..

[20]  J. Fritz,et al.  Dynamics of Precise Spike Timing in Primary Auditory Cortex , 2004, The Journal of Neuroscience.

[21]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[22]  Brian C J Moore,et al.  Speech perception problems of the hearing impaired reflect inability to use temporal fine structure , 2006, Proceedings of the National Academy of Sciences.

[23]  R. Plomp,et al.  Effect of temporal envelope smearing on speech reception. , 1994, The Journal of the Acoustical Society of America.

[24]  B C Moore,et al.  Detection of frequency modulation at low modulation rates: evidence for a mechanism based on phase locking. , 1996, The Journal of the Acoustical Society of America.

[25]  B C Moore,et al.  Factors affecting the loudness of modulated sounds. , 1999, The Journal of the Acoustical Society of America.

[26]  T W Picton,et al.  Potentials evoked by the sinusoidal modulation of the amplitude or frequency of a tone. , 1987, The Journal of the Acoustical Society of America.

[27]  A Rees,et al.  Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers. , 2001, The Journal of the Acoustical Society of America.

[28]  Xiaoqin Wang,et al.  Neural representations of sinusoidal amplitude and frequency modulations in the primary auditory cortex of awake primates. , 2002, Journal of neurophysiology.

[29]  A. Boemio,et al.  Hierarchical and asymmetric temporal sensitivity in human auditory cortices , 2005, Nature Neuroscience.

[30]  J. Ostwald,et al.  Temporal Coding of Amplitude and Frequency Modulation in the Rat Auditory Cortex , 1995, The European journal of neuroscience.

[31]  Alan R Palmer,et al.  Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. , 2003, Cerebral cortex.

[32]  J. Eggermont Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. , 2002, Journal of neurophysiology.

[33]  T Dau,et al.  A quantitative model of the "effective" signal processing in the auditory system. I. Model structure. , 1996, The Journal of the Acoustical Society of America.

[34]  Richard S. J. Frackowiak,et al.  Endogenous Cortical Rhythms Determine Cerebral Specialization for Speech Perception and Production , 2007, Neuron.

[35]  B. Kollmeier,et al.  Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. , 1997, The Journal of the Acoustical Society of America.

[36]  R. Draganova,et al.  Auditory Cortical Response Patterns to Multiple Rhythms of AM Sound , 2002, Ear and hearing.

[37]  Christian Berger-Vachon,et al.  Relationship between loudness growth function and auditory steady-state response in normal-hearing subjects , 2008, Hearing Research.

[38]  David Poeppel,et al.  Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition. , 2007, Journal of neurophysiology.

[39]  C. Lorenzi,et al.  Second-order temporal modulation transfer functions. , 2001, The Journal of the Acoustical Society of America.

[40]  David Poeppel,et al.  Concurrent encoding of frequency and amplitude modulation in human auditory cortex: MEG evidence. , 2006, Journal of neurophysiology.

[41]  Terence W. Picton,et al.  Human Auditory Steady-State Responses to Tones Independently Modulated in Both Frequency and Amplitude , 2001, Ear and hearing.

[42]  Jonathan Z. Simon,et al.  Denoising based on spatial filtering , 2008, Journal of Neuroscience Methods.

[43]  T. Picton,et al.  Age-related changes in transient and oscillatory brain responses to auditory stimulation in healthy adults 19-45 years old. , 2007, Cerebral cortex.

[44]  C Pantev,et al.  Stimulus induced desynchronization of human auditory 40-Hz steady-state responses. , 2005, Journal of neurophysiology.

[45]  T. Picton,et al.  The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. , 1987, Psychophysiology.

[46]  Richard S. J. Frackowiak,et al.  Representation of the temporal envelope of sounds in the human brain. , 2000, Journal of neurophysiology.

[47]  Alain de Cheveigné,et al.  Sensor noise suppression , 2008, Journal of Neuroscience Methods.

[48]  R. Shannon,et al.  Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. , 2001, The Journal of the Acoustical Society of America.

[49]  Terence W. Picton,et al.  Frequency specificity of 40-Hz auditory steady-state responses , 2003, Hearing Research.

[50]  Christian Füllgrabe,et al.  Perception of the envelope-beat frequency of inharmonic complex temporal envelopes. , 2005, The Journal of the Acoustical Society of America.

[51]  Riitta Hari,et al.  Neuromagnetic Responses to Frequency-Tagged Sounds: A New Method to Follow Inputs from Each Ear to the Human Auditory Cortex during Binaural Hearing , 2002, The Journal of Neuroscience.

[52]  Kourosh Saberi,et al.  A common neural code for frequency- and amplitude-modulated sounds , 1995, Nature.

[53]  M. S. John,et al.  MASTER: a Windows program for recording multiple auditory steady-state responses , 2000, Comput. Methods Programs Biomed..

[54]  S. Rosen Temporal information in speech: acoustic, auditory and linguistic aspects. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  Jonathan Z. Simon,et al.  Abstract Journal of Neuroscience Methods 165 (2007) 297–305 Denoising based on time-shift PCA , 2007 .

[56]  Terence W. Picton,et al.  Multiple Auditory Steady-State Responses to AM and FM Stimuli , 2001, Audiology and Neurotology.