Activation of CaMKII in single dendritic spines during long-term potentiation

[1]  Parsa Safa,et al.  CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation–transcription coupling , 2008, The Journal of cell biology.

[2]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[3]  Ryohei Yasuda,et al.  Highly sensitive and quantitative FRET–FLIM imaging in single dendritic spines using improved non-radiative YFP , 2008, Brain cell biology.

[4]  E. Gratton,et al.  Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. , 2008, Biochemical and biophysical research communications.

[5]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[6]  N. Spruston,et al.  Dendritic spikes induce single-burst long-term potentiation , 2007, Proceedings of the National Academy of Sciences.

[7]  Yasunori Hayashi,et al.  The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure , 2007, Proceedings of the National Academy of Sciences.

[8]  Ryohei Yasuda,et al.  Imaging spatiotemporal dynamics of neuronal signaling using fluorescence resonance energy transfer and fluorescence lifetime imaging microscopy , 2007, Current Opinion in Neurobiology.

[9]  Karel Svoboda,et al.  Activity-Dependent Plasticity of the NMDA-Receptor Fractional Ca2+ Current , 2007, Neuron.

[10]  C. Hoogenraad,et al.  Relative and Absolute Quantification of Postsynaptic Density Proteome Isolated from Rat Forebrain and Cerebellum*S , 2006, Molecular & Cellular Proteomics.

[11]  Borivoj Vojnovic,et al.  A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Svoboda,et al.  Erratum: Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging (Nature Neuroscience (2006) 9 (283-291)) , 2006 .

[13]  A. Nairn,et al.  Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II , 2006, The FEBS journal.

[14]  Karel Svoboda,et al.  Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging , 2006, Nature Neuroscience.

[15]  J. Hell,et al.  Activity-driven postsynaptic translocation of CaMKII. , 2005, Trends in pharmacological sciences.

[16]  James Kim,et al.  CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation , 2005, The Journal of cell biology.

[17]  Karel Svoboda,et al.  NMDA Receptor Subunit-Dependent [Ca2+] Signaling in Individual Hippocampal Dendritic Spines , 2005, The Journal of Neuroscience.

[18]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[19]  A. Miyawaki,et al.  Visualization of Synaptic Ca2+ /Calmodulin-Dependent Protein Kinase II Activity in Living Neurons , 2005, The Journal of Neuroscience.

[20]  John Lisman,et al.  Persistent Accumulation of Calcium/Calmodulin-Dependent Protein Kinase II in Dendritic Spines after Induction of NMDA Receptor-Dependent Chemical Long-Term Potentiation , 2004, The Journal of Neuroscience.

[21]  Y. Dan,et al.  Spike Timing-Dependent Plasticity of Neural Circuits , 2004, Neuron.

[22]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[23]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[24]  K. Svoboda,et al.  Imaging Calcium Concentration Dynamics in Small Neuronal Compartments , 2004, Science's STKE.

[25]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[26]  N. Thompson,et al.  Recent advances in fluorescence correlation spectroscopy. , 2002, Current opinion in structural biology.

[27]  R. Malinow,et al.  Ras and Rap Control AMPA Receptor Trafficking during Synaptic Plasticity , 2002, Cell.

[28]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[29]  Alcino J. Silva,et al.  A Pharmacogenetic Inducible Approach to the Study of NMDA/αCaMKII Signaling in Synaptic Plasticity , 2002, Current Biology.

[30]  J. Lisman,et al.  The molecular basis of CaMKII function in synaptic and behavioural memory , 2002, Nature Reviews Neuroscience.

[31]  K. Svoboda,et al.  The Life Cycle of Ca2+ Ions in Dendritic Spines , 2002, Neuron.

[32]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[33]  J. Lisman,et al.  A Model of Synaptic Memory A CaMKII/PP1 Switch that Potentiates Transmission by Organizing an AMPA Receptor Anchoring Assembly , 2001, Neuron.

[34]  J E Lisman,et al.  Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? , 2001, Journal of neurophysiology.

[35]  A. McAllister,et al.  Biolistic Transfection of Neurons , 2000, Science's STKE.

[36]  C. Dean,et al.  Environmental-Dependent Acceleration of a Developmental Switch: The Floral Transition , 2000, Science's STKE.

[37]  W. Webb,et al.  Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. , 1999, Biophysical journal.

[38]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[39]  E Neher,et al.  Usefulness and limitations of linear approximations to the understanding of Ca++ signals. , 1998, Cell calcium.

[40]  T. Soderling,et al.  Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. , 1997, Science.

[41]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[42]  M. Chalfie GREEN FLUORESCENT PROTEIN , 1995, Photochemistry and photobiology.

[43]  D. Johnston,et al.  Characterization of single voltage‐gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. , 1995, The Journal of physiology.

[44]  Dominique Muller,et al.  Increased Phosphorylation of Ca/Calmodulin-dependent Protein Kinase II and Its Endogenous Substrates in the Induction of Long Term Potentiation (*) , 1995, The Journal of Biological Chemistry.

[45]  Dimitri M. Kullmann,et al.  Ca2+ Entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus , 1992, Neuron.

[46]  M. Hagiwara,et al.  The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. , 1991, Biochemical and biophysical research communications.

[47]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[48]  Lawrence M. Grover,et al.  Two components of long-term potentiation induced by different patterns of afferent activation , 1990, Nature.

[49]  R M Pitkin,et al.  An embarrassment of riches. , 1989, Obstetrics and gynecology.

[50]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[51]  John M Koomen,et al.  Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. , 2004, The Journal of biological chemistry.

[52]  J. Lisman,et al.  A large sustained Ca2+ elevation occurs in unstimulated spines during the LTP pairing protocol but does not change synaptic strength , 2002, Hippocampus.

[53]  K. Mikoshiba,et al.  A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications , 2002, Nature Biotechnology.

[54]  D. Muller,et al.  Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in the induction of long-term potentiation. , 1995, The Journal of biological chemistry.