Distributed Transient Stability Simulation of Power Systems Based on a Jacobian-Free Newton-GMRES Method

As power systems becoming more closely interconnected and are being deregulated in energy markets, distributed simulations among different dispatch centers are highly required for online full system analysis and control applications. In this paper a new algorithm for distributed transient stability simulation of interconnected power systems is presented. Based on a Jacobian-free Newton-GMRES(m) method, this algorithm requires only exchanges of states of boundary buses among different regions. Therefore, it has strong scalability in distributed computing environments built on heterogeneous computing resources. Moreover, several accelerating methods are developed to enhance its efficiency, including continuous preconditioning with adaptive preconditioners, predicting boundary conditions and multistep coordination. The standard IEEE 39-bus system and a real power system with 1165 buses were used as test systems. The test results show that these accelerating methods greatly enhance the convergence rate of the proposed algorithm and reduce communication costs remarkably, which proves the novel algorithm is feasible and can be adopted in wide area networks with high-latency.

[1]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[2]  Ying Chen,et al.  A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations , 2006, IEEE Transactions on Power Systems.

[3]  Mario A. Bochicchio,et al.  A distributed computing approach for real-time transient stability analysis , 1997 .

[4]  Wang Chengshan,et al.  Subsystem boundary values methods for power system transient stability distributed simulation , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[5]  Minetada Osano,et al.  A distributed method for solving nonlinear equations applying the power load flow calculation , 1997, Proceedings of the Thirtieth Hawaii International Conference on System Sciences.

[6]  Daniel Tylavsky,et al.  Parallel processing in power systems computation , 1992 .

[7]  Yu Yixin,et al.  An asynchronously coordinating load flow calculation algorithm for the distributed energy management system (DEMS) , 1993, Proceedings of TENCON '93. IEEE Region 10 International Conference on Computers, Communications and Automation.

[8]  N. N. Schulz,et al.  Generalized three phase coupling method for i distributed simulation , 2005 .

[9]  Wei Zhang,et al.  /spl Phi/grid: grid computing infrastructure for power systems , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[10]  A. Conejo,et al.  Multi-area coordinated decentralized DC optimal power flow , 1998 .

[11]  Wenzhong Gao,et al.  Agent-based distributed simulation , 2006, 2006 IEEE Power Engineering Society General Meeting.

[12]  Mohammad Shahidehpour,et al.  Communication and Control in Electric Power Systems: Applications of Parallel and Distributed Processing , 2003 .

[13]  Vipin Kumar,et al.  Graph partitioning for high-performance scientific simulations , 2003 .

[14]  F. Y. Lu,et al.  Web-based simulations of power systems , 2002 .

[15]  K. K. Fung,et al.  Fast decoupled simulation of large power electronic systems using new two-port companion link models , 1997 .

[16]  Zhou Xiaoxin,et al.  Parallel algorithms for transient stability simulation on PC cluster , 2002, Proceedings. International Conference on Power System Technology.

[17]  J. Shu,et al.  A parallel transient stability simulation for power systems , 2005, IEEE Transactions on Power Systems.

[18]  J. A. Hollman,et al.  Real-Time Network Simulation with PC-Cluster , 2002, IEEE Power Engineering Review.

[19]  P. Miller,et al.  Real-time dynamic security assessment: fast simulation and modeling applied to emergency outage security of the electric grid , 2006, IEEE Power and Energy Magazine.

[20]  F. Milano,et al.  An open source power system analysis toolbox , 2005, 2006 IEEE Power Engineering Society General Meeting.