Simulation and Estimation of the Meixner Distribution

The Meixner distribution is a special case of the generalized z-distributions. Its properties make it potentially very useful in modeling short-term financial returns. This article proposes an algorithm to simulate the Meixner distribution, and shows how to obtain maximum likelihood estimators of its parameters. A GARCH-type model is then assessed, assuming that the innovation distribution is a standardized Meixner. Goodness-of-fit properties are investigated for some real financial time series, using bootstrap tests based on the empirical process of the residuals.

[1]  W. Schoutens The Meixner process : theory and applications in finance , 2002 .

[2]  D. Karlis An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution , 2002 .

[3]  Anil K. Bera,et al.  A Class of Nonlinear ARCH Models , 1992 .

[4]  Bootstrap misspecification tests for ARCH based on the empirical process of squared residuals , 2003 .

[5]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[6]  Timo Teräsvirta,et al.  Statistical Properties of the Asymmetric Power Arch Process , 1997 .

[7]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[8]  Asger Lunde,et al.  The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model , 2001 .

[9]  E. Haeusler,et al.  Empirical processes with estimated parameters under auxiliary information , 2006 .

[10]  J. MacKinnon Bootstrap Inference in Econometrics , 2002 .

[11]  R. Cont Empirical properties of asset returns: stylized facts and statistical issues , 2001 .

[12]  Alan David Hutson,et al.  Resampling Methods for Dependent Data , 2004, Technometrics.

[13]  J. A. Cuesta-Albertos,et al.  Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests , 2000 .

[14]  W. Stute,et al.  Bootstrap based goodness-of-fit-tests , 1993 .

[15]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[16]  C. Provasi,et al.  Estimating distribution functions in Johnson translation system by the starship procedure with simulated annealing , 2000 .

[17]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[18]  Tim Bollerslev,et al.  Bridging the gap between the distribution of realized (ECU) volatility and ARCH modelling (of the Euro): the GARCH‐NIG model , 2002 .

[19]  G. Jogesh Babu,et al.  Goodness-of-fit tests when parameters are estimated , 2004 .

[20]  H. Koul Weighted Empirical Processes in Dynamic Nonlinear Models , 2002 .

[21]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[22]  D. Boos Introduction to the Bootstrap World , 2003 .

[23]  G. A. Young,et al.  Recent Developments in Bootstrap Methodology , 2003 .

[24]  B. Grigelionis,et al.  Generalized z-Distributions and Related Stochastic Processes , 2001 .

[25]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[26]  Jin-Chuan Duan,et al.  Augmented GARCH (p,q) process and its diffusion limit , 1997 .

[27]  G. Szűcs Parametric bootstrap tests for continuous and discrete distributions , 2007 .

[28]  E. Eberlein,et al.  Hyperbolic distributions in finance , 1995 .

[29]  Sébastien Laurent Analytical Derivates of the APARCH Model , 2004 .

[30]  Empirical Process of the Squared Residuals of an ARCH Sequence , 2001 .

[31]  Limit results for the empirical process of squared residuals in GARCH models , 2003 .

[32]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[33]  An approach to the non-normal behavior of hedge fund indices using Johnson distributions. , 2004 .

[34]  O. Barndorff-Nielsen Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .

[35]  I. D. Hill,et al.  Fitting Johnson Curves by Moments , 1976 .

[36]  William B. White,et al.  All in the Family , 2005 .

[37]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[38]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Risk analysis and the NIG distribution , 2000 .

[40]  C. Provasi,et al.  Misspecification Testing for the Conditional Distribution Model in GARCH-Type Processes , 2008 .

[41]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[42]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[43]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[44]  Parametric bootstrap tests for continuous and discrete distributions , 2008 .

[45]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .