Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications.

As classical 1D nanoscale structures, carbon nanotubes (CNTs) possess remarkable mechanical, electrical, thermal, and optical properties. In the past several years, considerable attention has been paid to the use of CNTs as building blocks for novel high-performance materials. In this way, the production of macroscopic architectures based on assembled CNTs with controlled orientation and configurations is an important step towards their application. So far, various forms of macroscale CNT assemblies have been produced, such as 1D CNT fibers, 2D CNT films/sheets, and 3D aligned CNT arrays or foams. These macroarchitectures, depending on the manner in which they are assembled, display a variety of fascinating features that cannot be achieved using conventional materials. This review provides an overview of various macroscopic CNT assemblies, with a focus on their preparation and mechanical properties as well as their potential applications in practical fields.

[1]  Xin Wang,et al.  A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes , 2010 .

[2]  Jinzhu Li,et al.  Axial Compression of Hierarchically Structured Carbon Nanotube Fiber Embedded in Epoxy , 2010 .

[3]  Takeo Yamada,et al.  Extracting the Full Potential of Single‐Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density , 2010, Advanced materials.

[4]  Vahid Mirjalili,et al.  Correlation between Young’s modulus and impregnation quality of epoxy-impregnated SWCNT buckypaper , 2010 .

[5]  J. Greer,et al.  In situ Mechanical Testing Reveals Periodic Buckle Nucleation and Propagation in Carbon Nanotube Bundles , 2010 .

[6]  Yi Cui,et al.  Printed energy storage devices by integration of electrodes and separators into single sheets of paper , 2010 .

[7]  Yi Jia,et al.  Soft, highly conductive nanotube sponges and composites with controlled compressibility. , 2010, ACS nano.

[8]  Haiqing Zhou,et al.  Surface‐Energy Generator of Single‐Walled Carbon Nanotubes and Usage in a Self‐Powered System , 2010, Advanced materials.

[9]  Feng Hou,et al.  Continuous Multilayered Carbon Nanotube Yarns , 2010, Advanced materials.

[10]  K. Jiang,et al.  Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method , 2010, Nanotechnology.

[11]  Yi Cui,et al.  Stretchable, porous, and conductive energy textiles. , 2010, Nano letters.

[12]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[13]  X. Bai,et al.  Synthesis, Structure, and Properties of Single‐Walled Carbon Nanotubes , 2009 .

[14]  Wei Zhou,et al.  True solutions of single-walled carbon nanotubes for assembly into macroscopic materials , 2009, Nature Nanotechnology.

[15]  B. Wei,et al.  Assembly and Applications of Carbon Nanotube Thin Films , 2009 .

[16]  A. Javey,et al.  Toward the Development of Printable Nanowire Electronics and Sensors , 2009 .

[17]  C. Huynh,et al.  Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process , 2009 .

[18]  A. Windle,et al.  Properties of composites of carbon nanotube fibres , 2009 .

[19]  J. Ferraris,et al.  Electrochemically Tuned Properties for Electrolyte‐Free Carbon Nanotube Sheets , 2009 .

[20]  Xiaosu Yi,et al.  High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. , 2009, Nano letters.

[21]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[22]  Qingfeng Liu,et al.  In situ assembly of multi-sheeted buckybooks from single-walled carbon nanotubes. , 2009, ACS nano.

[23]  W. Ma,et al.  Monitoring a Micromechanical Process in Macroscale Carbon Nanotube Films and Fibers , 2009, Advanced materials.

[24]  Po-Chiang Chen,et al.  Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films , 2009 .

[25]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[26]  K. Jiang,et al.  Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites , 2008 .

[27]  Yang Wang,et al.  Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. , 2008, Nano letters.

[28]  Liangti Qu,et al.  Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off , 2008, Science.

[29]  I. Kinloch,et al.  Macroscopic fibers of well-aligned carbon nanotubes by wet spinning. , 2008, Small.

[30]  M. Elimelech,et al.  Environmental applications of carbon-based nanomaterials. , 2008, Environmental science & technology.

[31]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[32]  Brian L. Wardle,et al.  Joining prepreg composite interfaces with aligned carbon nanotubes , 2008 .

[33]  J. Cui,et al.  Effect of combined application of electromagnetic fields on horizontal direct chill casting of 7050 aluminium alloy , 2008 .

[34]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[35]  W. Ma,et al.  Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies. , 2008, Nano letters.

[36]  Anthony J. Miller,et al.  Carbon nanotubes: a multi-functional material for organic optoelectronics , 2008 .

[37]  K. Liao,et al.  How long can single-walled carbon nanotube ropes last under static or dynamic fatigue? , 2008 .

[38]  Changhong Liu,et al.  Highly oriented carbon nanotube papers made of aligned carbon nanotubes , 2008, Nanotechnology.

[39]  Shoushan Fan,et al.  Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. , 2008, Nano letters.

[40]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[41]  Lijie Ci,et al.  Experimental observation of an extremely dark material made by a low-density nanotube array. , 2008, Nano letters.

[42]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[43]  Ado Jorio,et al.  Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications , 2007 .

[44]  I. Kinloch,et al.  High Performance Fibres from ‘Dog Bone’ Carbon Nanotubes , 2007 .

[45]  Robert Vajtai,et al.  Ultrathick Freestanding Aligned Carbon Nanotube Films , 2007 .

[46]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[47]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[48]  Joerg R. Jinschek,et al.  Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. , 2007, Nano letters.

[49]  Lifeng Liu,et al.  Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. , 2007, Nano letters.

[50]  P. Ajayan,et al.  Multifunctional Macroarchitectures of Double‐Walled Carbon Nanotube Fibers , 2007 .

[51]  Omkaram Nalamasu,et al.  Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. , 2007, Nature nanotechnology.

[52]  James M. Tour,et al.  Materials Science: Nanotube composites , 2007, Nature.

[53]  Young Hee Lee,et al.  Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. , 2007, Journal of the American Chemical Society.

[54]  Chuck Zhang,et al.  High‐Strength and Multifunctional Macroscopic Fabric of Single‐Walled Carbon Nanotubes , 2007 .

[55]  P. Ajayan,et al.  Compression-modulated tunable-pore carbon-nanotube membrane filters. , 2007, Small.

[56]  J. Madden,et al.  Electrochemical actuation of carbon nanotube yarns , 2007 .

[57]  Li Zhang,et al.  Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. , 2007, Journal of the American Chemical Society.

[58]  Krisztian Kordas,et al.  Chip cooling with integrated carbon nanotube microfin architectures , 2007 .

[59]  Lianxi Zheng,et al.  Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. , 2007, Small.

[60]  Kenneth S. Vecchio,et al.  Mechanical behavior of ultralong multiwalled carbon nanotube mats , 2007 .

[61]  Surjya K. Pal,et al.  Direct growth of aligned carbon nanotubes on bulk metals , 2006, Nature nanotechnology.

[62]  Tobin J Marks,et al.  Organic light-emitting diodes having carbon nanotube anodes. , 2006, Nano letters.

[63]  G. Grüner,et al.  Carbon nanotube films for transparent and plastic electronics , 2006 .

[64]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[65]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006, Nano letters.

[66]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[67]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[68]  J. Kong,et al.  Spinning and Processing Continuous Yarns from 4‐Inch Wafer Scale Super‐Aligned Carbon Nanotube Arrays , 2006 .

[69]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[70]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[71]  C. Grigoropoulos,et al.  Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes , 2006, Science.

[72]  P. Ajayan,et al.  Multifunctional composites using reinforced laminae with carbon-nanotube forests , 2006, Nature materials.

[73]  Ricardo Izquierdo,et al.  Carbon nanotube sheets as electrodes in organic light-emitting diodes. , 2006 .

[74]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[75]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[76]  Omkaram Nalamasu,et al.  Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications. , 2006, Nano letters.

[77]  F. Hussain,et al.  Self‐Assembly of Single‐Walled Carbon Nanotubes into a Sheet by Drop Drying , 2006 .

[78]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[79]  W Gregory Sawyer,et al.  Super-Compressible Foamlike Carbon Nanotube Films , 2005, Science.

[80]  Husnu Emrah Unalan,et al.  Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells , 2005 .

[81]  Mainak Majumder,et al.  Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes , 2005, Nature.

[82]  H. Dai,et al.  Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Jun Chen,et al.  Single wall carbon nanotube paper as anode for lithium-ion battery , 2005 .

[84]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[85]  Ali Dhinojwala,et al.  Synthetic gecko foot-hairs from multiwalled carbon nanotubes. , 2005, Chemical communications.

[86]  Ya-Li Li,et al.  Mechanical properties of continuously spun fibers of carbon nanotubes. , 2005, Nano letters.

[87]  Michael Tinkham,et al.  Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain , 2005 .

[88]  Changhong Liu,et al.  Aligned Carbon Nanotube Composite Films for Thermal Management , 2005 .

[89]  Mehrdad N. Ghasemi-Nejhad,et al.  Multifunctional brushes made from carbon nanotubes , 2005, Nature materials.

[90]  Kyeongjae Cho,et al.  First principles study of work functions of single wall carbon nanotubes. , 2005, Physical review letters.

[91]  P. McEuen,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[92]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[93]  M. Kozlov,et al.  Spinning Solid and Hollow Polymer‐Free Carbon Nanotube Fibers , 2005 .

[94]  K. R. Atkinson,et al.  Multifunctional Carbon Nanotube Yarns by Downsizing an Ancient Technology , 2004, Science.

[95]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[96]  M. Dresselhaus,et al.  Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. , 2004, Physical review letters.

[97]  Ben Wang,et al.  Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites , 2004 .

[98]  Satish Kumar,et al.  Properties and Structure of Nitric Acid Oxidized Single Wall Carbon Nanotube Films , 2004 .

[99]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.

[100]  N. Kotov,et al.  Layer-by-layer assembled composites from multiwall carbon nanotubes with different morphologies , 2004 .

[101]  S. Xie,et al.  Direct Synthesis of a Macroscale Single‐Walled Carbon Nanotube Non‐Woven Material , 2004 .

[102]  P. Ajayan,et al.  Carbon nanotube filters , 2004, Nature materials.

[103]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[104]  B. Wei,et al.  Carbon nanotube filaments in household light bulbs , 2004 .

[105]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[106]  W Benoit,et al.  Reinforcement of single-walled carbon nanotube bundles by intertube bridging , 2004, Nature materials.

[107]  L. Schadler Polymer‐Based and Polymer‐Filled Nanocomposites , 2004 .

[108]  Rodney Andrews,et al.  Aligned Multiwalled Carbon Nanotube Membranes , 2004, Science.

[109]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[110]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[111]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[112]  Joselito M. Razal,et al.  Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives , 2003 .

[113]  Maurizio Prato,et al.  Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites , 2002, Nature materials.

[114]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[115]  Shoushan Fan,et al.  Nanotechnology: Spinning continuous carbon nanotube yarns , 2002, Nature.

[116]  R. Smalley,et al.  Synthesis, Structure, and Properties of PBO/SWNT Composites & , 2002 .

[117]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[118]  P. Ajayan,et al.  Microfabrication technology: Organized assembly of carbon nanotubes , 2002, Nature.

[119]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[120]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[121]  M. Radosavljevic,et al.  High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes , 2001 .

[122]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[123]  Young Hee Lee,et al.  Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes , 2001 .

[124]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[125]  A. Rinzler,et al.  ALIGNED SINGLE-WALL CARBON NANOTUBES IN COMPOSITES BY MELT PROCESSING METHODS , 2000 .

[126]  M. Dresselhaus,et al.  Synthesis of Macroscopically Long Ropes of Well-Aligned Single-Walled Carbon Nanotubes , 2000 .

[127]  Andrew G. Rinzler,et al.  Solid‐State Electrochemistry of the Li Single Wall Carbon Nanotube System , 2000 .

[128]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[129]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[130]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[131]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[132]  A. Rao,et al.  Continuous production of aligned carbon nanotubes: a step closer to commercial realization , 1999 .

[133]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[134]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[135]  Hui-Ming Cheng,et al.  Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons , 1998 .

[136]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[137]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[138]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[139]  S. Xie,et al.  Large-Scale Synthesis of Aligned Carbon Nanotubes , 1996, Science.

[140]  T. Chou,et al.  An assessment of the science and technology of carbon nanotube-based fibers and composites , 2010 .

[141]  J. Falconer,et al.  High density, vertically-aligned carbon nanotube membranes. , 2009, Nano letters.

[142]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[143]  Rajesh K. Saini,et al.  Phase Behavior and Rheology of SWNTs in Superacids , 2004 .

[144]  Richard E. Smalley,et al.  Single-Wall Carbon Nanotube Films , 2003 .

[145]  P. Harris Carbon Nanotubes and Related Structures: The physics of nanotubes , 1999 .