In-field metagenome and 16S rRNA gene amplicon nanopore sequencing robustly characterize glacier microbiota

In the field of observation, chance favours only the prepared mind (Pasteur). Impressive developments in genomics have led microbiology to its third “Golden Age”. However, conventional metagenomics strategies necessitate retrograde transfer of samples from extreme or remote environments for later analysis, rendering the powerful insights gained retrospective in nature, striking a contrast with Pasteur’s dictum. Here we implement highly portable USB-based nanopore DNA sequencing platforms coupled with field-adapted environmental DNA extraction, rapid sequence library generation and off-line analyses of shotgun metagenome and 16S ribosomal RNA gene amplicon profiles to characterize microbiota dwelling within cryoconite holes upon Svalbard glaciers, the Greenland Ice Sheet and the Austrian Alps. We show in-field nanopore sequencing of metagenomes captures taxonomic composition of supraglacial microbiota, while 16S rRNA gene amplicon sequencing resolves bacterial community responses to habitat changes. We benchmark the capability of in-field microbiome sequencing to characterize microbial communities by comparison of nanopore data with prior Illumina metagenomic data and 16S rRNA gene V1-V3 pyrosequencing from the same samples, demonstrating a high level of coherence between profiles obtained from nanopore sequencing and laboratory based sequencing approaches. Ultimately, in-field sequencing potentiated by nanopore devices raises the prospect of enhanced agility in exploring Earth’s most remote microbiomes.

[1]  Szymon T Calus,et al.  NanoAmpli-Seq: a workflow for amplicon sequencing for mixed microbial communities on the nanopore sequencing platform , 2018, bioRxiv.

[2]  Lyle G. Whyte,et al.  In Situ Field Sequencing and Life Detection in Remote (79°26′N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities , 2017, Front. Microbiol..

[3]  Sota Tanaka,et al.  Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers , 2017 .

[4]  Jennifer L. Gardy,et al.  Towards a genomics-informed, real-time, global pathogen surveillance system , 2017, Nature Reviews Genetics.

[5]  Rick L. Stevens,et al.  A communal catalogue reveals Earth’s multiscale microbial diversity , 2017, Nature.

[6]  Lee J Kerkhof,et al.  Profiling bacterial communities by MinION sequencing of ribosomal operons , 2017, Microbiome.

[7]  N. Barrand,et al.  Glacier shrinkage driving global changes in downstream systems , 2017, Proceedings of the National Academy of Sciences.

[8]  T. Hamilton,et al.  Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. , 2017, Environmental microbiology.

[9]  E. Zaikova,et al.  Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer. , 2017, Journal of biomolecular techniques : JBT.

[10]  R. Franklin,et al.  MinION TM nanopore sequencing of environmental metagenomes: a synthetic approach , 2017 .

[11]  A. Anesio,et al.  Linking microbial diversity and functionality of arctic glacial surface habitats , 2017, Environmental microbiology.

[12]  S. Oliver,et al.  Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes , 2017, GigaScience.

[13]  Douglas J. Botkin,et al.  Nanopore DNA Sequencing and Genome Assembly on the International Space Station , 2016, bioRxiv.

[14]  Robert C. Edgar,et al.  SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences , 2016, bioRxiv.

[15]  Sota Tanaka,et al.  Microbial community variation in cryoconite granules on Qaanaaq Glacier, NW Greenland. , 2016, FEMS microbiology ecology.

[16]  G. Barker,et al.  Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401 , 2016, BMC Genomics.

[17]  L. Mur,et al.  Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap , 2016, Molecular ecology.

[18]  L. Mur,et al.  Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. , 2016, Environmental microbiology.

[19]  A. Anesio,et al.  The biogeography of red snow microbiomes and their role in melting arctic glaciers , 2016, Nature Communications.

[20]  A. Anesio,et al.  Can the Bacterial Community of a High Arctic Glacier Surface Escape Viral Control? , 2016, Front. Microbiol..

[21]  C. Mayer,et al.  Light-dependent microbial metabolisms drive carbon fluxes on glacier surfaces , 2016, The ISME Journal.

[22]  Anders Krogh,et al.  Fast and sensitive taxonomic classification for metagenomics with Kaiju , 2016, Nature Communications.

[23]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[24]  David A. Matthews,et al.  Real-time, portable genome sequencing for Ebola surveillance , 2016, Nature.

[25]  N. Takeuchi,et al.  Cryoconite , 2016 .

[26]  Niranjan Nagarajan,et al.  INC-Seq: accurate single molecule reads using nanopore sequencing , 2016, bioRxiv.

[27]  J. Choo,et al.  Sample storage conditions significantly influence faecal microbiome profiles , 2015, Scientific Reports.

[28]  N. Chrismas,et al.  Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach , 2015, Front. Microbiol..

[29]  D. A. Klein Partial Formalization: An Approach for Critical Analysis of Definitions and Methods Used in Bulk Extraction-Based Molecular Microbial Ecology , 2015 .

[30]  A. Anesio,et al.  Microbial diversity on Icelandic glaciers and ice caps , 2015, Front. Microbiol..

[31]  L. Hansen,et al.  Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. , 2015, Environmental microbiology reports.

[32]  A. Edwards Coming in from the cold: potential microbial threats from the terrestrial cryosphere , 2015, Front. Earth Sci..

[33]  Arwyn Edwards,et al.  Microbial abundance in surface ice on the Greenland Ice Sheet , 2015, Front. Microbiol..

[34]  A. Anesio,et al.  Stable microbial community composition on the Greenland Ice Sheet , 2015, Front. Microbiol..

[35]  C. Gast Microbial biogeography: the end of the ubiquitous dispersal hypothesis? , 2015 .

[36]  A. Edwards,et al.  Microbial dynamics in glacier forefield soils show succession is not just skin deep , 2015, Molecular ecology.

[37]  Paul Turner,et al.  Reagent and laboratory contamination can critically impact sequence-based microbiome analyses , 2014, BMC Biology.

[38]  S. Banwart,et al.  A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard. , 2014 .

[39]  Carlo Barbante,et al.  A microbial ecosystem beneath the West Antarctic ice sheet , 2014, Nature.

[40]  G. Griffith,et al.  Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. , 2014, FEMS microbiology ecology.

[41]  Mick Watson,et al.  poRe: an R package for the visualization and analysis of nanopore sequencing data , 2014, bioRxiv.

[42]  A. Mitchell,et al.  A germ theory for glacial systems? , 2014 .

[43]  Bas E. Dutilh,et al.  FOCUS: an alignment-free model to identify organisms in metagenomes using non-negative least squares , 2014, PeerJ.

[44]  Franck Carbonero,et al.  Metabolic Flexibility as a Major Predictor of Spatial Distribution in Microbial Communities , 2014, PloS one.

[45]  Arwyn Edwards,et al.  A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem , 2013 .

[46]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[47]  Arwyn Edwards,et al.  The dynamic bacterial communities of a melting High Arctic glacier snowpack , 2013, The ISME Journal.

[48]  A. Anesio,et al.  Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. , 2012, Environmental microbiology.

[49]  A. Hodson,et al.  Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. , 2012, FEMS microbiology ecology.

[50]  Son V. Nghiem,et al.  The extreme melt across the Greenland ice sheet in 2012 , 2012 .

[51]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[52]  Mario P. Brito,et al.  Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments , 2012 .

[53]  Rob Knight,et al.  Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients , 2011, The ISME Journal.

[54]  Nick Rutter,et al.  Hydrology and hydrochemistry of a deglaciating high-Arctic catchment, Svalbard , 2011 .

[55]  M. David,et al.  Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw , 2011, Nature.

[56]  A. Anesio,et al.  Nitrogen fixation on Arctic glaciers, Svalbard , 2011 .

[57]  J. Gilbert,et al.  The importance of metagenomic surveys to microbial ecology: or why Darwin would have been a metagenomic scientist , 2011, Microbial Informatics and Experimentation.

[58]  Peter Meinicke,et al.  Mixture models for analysis of the taxonomic composition of metagenomes , 2011, Bioinform..

[59]  Rick L. Stevens,et al.  Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project , 2010, Standards in genomic sciences.

[60]  S. Banwart,et al.  The microstructure and biogeochemistry of Arctic cryoconite granules , 2010, Annals of Glaciology.

[61]  Alexandre M. Anesio,et al.  Carbon fluxes through bacterial communities on glacier surfaces , 2010, Annals of Glaciology.

[62]  W. Vincent Microbial ecosystem responses to rapid climate change in the Arctic , 2010, The ISME Journal.

[63]  D. Pearce,et al.  The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard , 2010, Journal of Glaciology.

[64]  N. Kyrpides,et al.  Genome Sequence of the Fleming Strain of Micrococcus luteus, a Simple Free-Living Actinobacterium , 2009, Journal of bacteriology.

[65]  A. Anesio,et al.  Phosphatase activity and organic phosphorus turnover on a high Arctic glacier , 2009 .

[66]  A. Anesio,et al.  High microbial activity on glaciers: importance to the global carbon cycle , 2009 .

[67]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[68]  T. Curtis Microbial ecologists: it's time to 'go large' , 2006, Nature Reviews Microbiology.

[69]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[70]  J. Meeks,et al.  Cellular differentiation in the cyanobacterium Nostoc punctiforme , 2002, Archives of Microbiology.

[71]  K. Kakinuma,et al.  Phylogenetic Analysis of Salmonella, Shigella, and Escherichia coli Strains on the Basis of the gyrB Gene Sequence , 2002, Journal of Clinical Microbiology.

[72]  S. Kohshima,et al.  Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps) (scientific paper) , 2001 .

[73]  E. Delong,et al.  Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing , 1991, Journal of bacteriology.

[74]  M. Jiang Limitation , 2020, Accountants’ Negligence and Liability.

[75]  Arwyn Edwards,et al.  Extreme metagenomics using nanopore DNA sequencing : a field report from Svalbard , 78 ° N , 2016 .

[76]  C. J. van der Gast Microbial biogeography: the end of the ubiquitous dispersal hypothesis? , 2015, Environmental microbiology.

[77]  G. Griffith,et al.  Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard , 2011, The ISME Journal.

[78]  T. Jonas,et al.  A virtual network for estimating daily new snow water equivalent and snow depth in the Swiss Alps , 2010, Annals of Glaciology.

[79]  C. Meyer Germ theory. , 2003, Minnesota medicine.

[80]  N. Takeuchi Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite , 2002, Annals of Glaciology.

[81]  F. Brinkman,et al.  Phylogenetic analysis. , 1998, Methods of biochemical analysis.

[82]  N. Pierce Origin of Species , 1914, Nature.

[83]  Orkun S. Soyer,et al.  Challenges in microbial ecology: building predictive understanding of community function and dynamics , 2016, The ISME Journal.

[84]  A. Fernández-González,et al.  Environmental Microbiology , 2022 .