RECONSTRUCTING PAST CLIMATE FROM NATURAL PROXIES AND ESTIMATED CLIMATE FORCINGS USING LONG MEMORY MODELS

We produce new reconstructions of Northern Hemisphere annually averaged temperature anomalies back to 1000AD, based on a model that includes external climate forcings and accounts for the long-memory features displayed in the data sets. Our reconstruction is based on two linear models, with the first linking the latent temperature series to three main external forcings (solar irradiance, greenhouse gas concentration, and volcanism), and the second linking the observed temperature proxy data (tree rings, sediment record, ice cores, etc.) to the unobserved temperature series. Uncertainty is captured with additive noise, and a rigorous statistical investigation of the correlation structure in the regression errors motivates the use of long memory fractional Gaussian noise models for the error terms. We use Bayesian estimation to fit the model parameters and to perform separate reconstructions of land-only and combined land-and-marine temperature anomalies. We quantify the effects of including the forcings and long memory models on the quality of model fits, and find that long memory models result in more precise uncertainty quantification, while the external climate forcings substantially reduce the bias and variance of the reconstructions. Validation metrics for the annually resolved reconstruction produced here, which includes both forcings and long memory models, compare favorably to those for the smoothed, decadally resolved reconstructions of Mann et al. (2008a). Finally, we use posterior samples of model parameters to arrive at an estimate of the transient climate response to greenhouse gas forcings of 2.56◦C (95% credible interval of [2.20, 2.95]◦C), in line with previous, climate-model-based estimates. .

[1]  M. Allen,et al.  Sensitivity of Climate Change Detection and Attribution to the Characterization of Internal Climate Variability , 2014 .

[2]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[3]  Reto Knutti,et al.  Energy budget constraints on climate response , 2013 .

[4]  N. Graham,et al.  Continental-scale temperature variability during the past two millennia , 2013 .

[5]  Peter Huybers,et al.  Recent temperature extremes at high northern latitudes unprecedented in the past 600 years , 2013, Nature.

[6]  Eugene R. Wahl,et al.  Last Millennium Climate and Its Variability in CCSM4 , 2013 .

[7]  J. Smerdon,et al.  A Pseudoproxy Evaluation of Bayesian Hierarchical Modeling and Canonical Correlation Analysis for Climate Field Reconstructions over Europe , 2013 .

[8]  G. Peccati,et al.  Normal Approximations with Malliavin Calculus: From Stein's Method to Universality , 2012 .

[9]  Bo Li,et al.  Comments on “Reconstructing the NH Mean Temperature: Can Underestimation of Trends and Variability Be Avoided?” , 2012 .

[10]  F. Viens,et al.  Estimation and pricing under long-memory stochastic volatility , 2012 .

[11]  J. Smerdon,et al.  Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise‐only predictors , 2012 .

[12]  N. Gillett,et al.  Improved constraints on 21st‐century warming derived using 160 years of temperature observations , 2012 .

[13]  Stefano M. Iacus,et al.  Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package , 2011, Computational Statistics.

[14]  Andrew D. Martin,et al.  MCMCpack: Markov chain Monte Carlo in R , 2011 .

[15]  Abraham J. Wyner,et al.  A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? , 2011, 1104.4002.

[16]  Christopher H. Jackson,et al.  Multi-State Models for Panel Data: The msm Package for R , 2011 .

[17]  Murali Haran,et al.  Piecing together the past: statistical insights into paleoclimatic reconstructions , 2010 .

[18]  J. Smerdon,et al.  A Pseudoproxy Evaluation of the CCA and RegEM Methods for Reconstructing Climate Fields of the Last Millennium , 2010 .

[19]  D. Nychka,et al.  The Value of Multiproxy Reconstruction of Past Climate , 2010 .

[20]  W. Landman Climate change 2007: the physical science basis , 2010 .

[21]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part II: Comparison with the Regularized Expectation–Maximization Algorithm , 2010 .

[22]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part I: Development and Applications to Paleoclimate Reconstruction Problems , 2010 .

[23]  Eugene R. Wahl,et al.  Comments on "A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness". , 2010 .

[24]  F. Viens,et al.  Hurst Index Estimation for Self-Similar Processes with Long-Memory , 2010 .

[25]  F. Viens,et al.  Variations and Hurst index estimation for a Rosenblatt process using longer filters , 2009, 0912.3148.

[26]  G. Faluvegi,et al.  Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly , 2009, Science.

[27]  J. Overpeck,et al.  Recent Warming Reverses Long-Term Arctic Cooling , 2009, Science.

[28]  A. Genz,et al.  Computation of Multivariate Normal and t Probabilities , 2009 .

[29]  Anthony Murphy,et al.  Bootstrapping long memory tests: Some Monte Carlo results , 2009, Comput. Stat. Data Anal..

[30]  Bo Christiansen,et al.  A Surrogate Ensemble Study of Climate Reconstruction Methods: Stochasticity and Robustness , 2009 .

[31]  E. Mosley‐Thompson,et al.  High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects , 2009 .

[32]  Josefino C. Comiso,et al.  Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year , 2009, Nature.

[33]  Eugene R. Wahl,et al.  Reply to comment by Jason E. Smerdon et al. on “Robustness of proxy‐based climate field reconstruction methods” , 2008 .

[34]  M. Hughes,et al.  Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia , 2008, Proceedings of the National Academy of Sciences.

[35]  Francis W. Zwiers,et al.  Evaluation of proxy-based millennial reconstruction methods , 2008 .

[36]  Q. Pan,et al.  Joint state and parameter estimation in particle filtering and stochastic optimization , 2008 .

[37]  B. Øksendal,et al.  Stochastic Calculus for Fractional Brownian Motion and Applications , 2008 .

[38]  A. I. McLeod,et al.  Algorithms for Linear Time Series Analysis: With R Package , 2007 .

[39]  C. Czado,et al.  Spatial modelling of claim frequency and claim size in non-life insurance , 2007 .

[40]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[41]  F. Joos,et al.  Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model , 2007, Proceedings of the National Academy of Sciences.

[42]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[43]  Anders Moberg,et al.  Millennial temperature reconstruction intercomparison and evaluation , 2006 .

[44]  F. Viens,et al.  Statistical aspects of the fractional stochastic calculus , 2006, math/0609295.

[45]  Gerald R. North,et al.  Surface Temperature Reconstructions for the Last 1000 Years , 2006 .

[46]  Simon P. Wilson,et al.  Bayesian palaeoclimate reconstruction , 2006 .

[47]  P. Jones,et al.  Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 , 2006 .

[48]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[49]  Peter Huybers,et al.  Links between annual, Milankovitch and continuum temperature variability , 2005, Nature.

[50]  Eugene R. Wahl,et al.  Testing the Fidelity of Methods Used in Proxy-Based Reconstructions of Past Climate , 2005 .

[51]  Malcolm K. Hughes,et al.  Proxy-Based Northern Hemisphere Surface Temperature Reconstructions: Sensitivity to Method, Predictor Network, Target Season, and Target Domain , 2005 .

[52]  Fred Espen Benth,et al.  Stochastic Modelling of Temperature Variations with a View Towards Weather Derivatives , 2005 .

[53]  K. Holmgren,et al.  Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data , 2005, Nature.

[54]  E. Cook,et al.  Alternative methods of proxy-based climate field reconstruction: application to summer drought over the conterminous United States back to AD 1700 from tree-ring data , 2004 .

[55]  H. Wanner,et al.  European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500 , 2004, Science.

[56]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[57]  T. Saarinen,et al.  A 3000‐year palaeoenvironmental record from annually laminated sediment of Lake Korttajarvi, central Finland , 2003 .

[58]  Scott Rutherford,et al.  Climate Field Reconstruction under Stationary and Nonstationary Forcing , 2003 .

[59]  A. Breton,et al.  Statistical Analysis of the Fractional Ornstein–Uhlenbeck Type Process , 2002 .

[60]  B. Cook,et al.  A multi-millennial palaeoclimatic resource from Lagarostrobos colensoi tree-rings at Oroko Swamp, New Zealand , 2002 .

[61]  D. Brody,et al.  Dynamical pricing of weather derivatives , 2002 .

[62]  Donald B. Percival,et al.  Interpretation of North Pacific Variability as a Short- and Long-Memory Process* , 2001 .

[63]  Scott Rutherford,et al.  Climate reconstruction using ‘Pseudoproxies’ , 2001 .

[64]  T. Gneiting,et al.  Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..

[65]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[66]  T. Schneider Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .

[67]  Noel A Cressie,et al.  Long-Lead Prediction of Pacific SSTs via Bayesian Dynamic Modeling , 2000 .

[68]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[69]  E. Cook,et al.  Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies , 2000 .

[70]  M. Hughes,et al.  Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations , 1999 .

[71]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[72]  F. H. Schweingruber,et al.  Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years , 1998, Nature.

[73]  Malcolm K. Hughes,et al.  Global-scale temperature patterns and climate forcing over the past six centuries , 1998, Nature.

[74]  Konrad A Hughen,et al.  Arctic Environmental Change of the Last Four Centuries , 1997 .

[75]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[76]  Kwang-Yul Kim,et al.  Comparison of proxy records of climate change and solar forcing , 1996 .

[77]  J. Lean,et al.  Reconstruction of solar irradiance since 1610: Implications for climate change , 1995 .

[78]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[79]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[80]  Gordon C. Jacoby,et al.  Tree ring width and density evidence of climatic and potential forest change in Alaska , 1995 .

[81]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[82]  Edward R. Cook,et al.  SPATIAL REGRESSION METHODS IN DENDROCLIMATOLOGY: A REVIEW AND COMPARISON OF TWO TECHNIQUES , 1994 .

[83]  T. Crowley,et al.  Reassessment of Crete (Greenland) ice core acidity/volcanism link to climate change , 1993 .

[84]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[85]  J. Beran A Goodness‐Of‐Fit Test for Time Series with Long Range Dependence , 1992 .

[86]  R. Davies,et al.  Tests for Hurst effect , 1987 .

[87]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[88]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[89]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[90]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[91]  Richard L. Smith Understanding Sensitivities in Paleoclimatic Reconstructions , 2010 .

[92]  M. Loso Summer temperatures during the Medieval Warm Period and Little Ice Age inferred from varved proglacial lake sediments in southern Alaska , 2008 .

[93]  G. Hegerl,et al.  Understanding and Attributing Climate Change , 2007 .

[94]  Stephen P. Brooks,et al.  Assessing Convergence of Markov Chain Monte Carlo Algorithms , 2007 .

[95]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[96]  H. L. Miller,et al.  Global climate projections , 2007 .

[97]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[98]  Gabriel Lang,et al.  Quadratic variations and estimation of the local Hölder index of a gaussian process , 1997 .

[99]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[100]  kwang-yul kim,et al.  Towards development of a strategy for determining the origin of decadal-centennial scale climate variabiligy , 1993 .

[101]  B. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .