Enhanced Visible Light Photocatalytic Performance by Nanostructured Semiconductors with Glancing Angle Deposition Method

The glancing angle deposition (GLAD) method in physical vapor deposition is proved to be a versatile tool to fabricate nanostructured TiO2 as the photocatalyst on specific substrates to form self-standing structures, which are much easier to be recycled. And novel designs of doping, decorating photocatalytic active substance, are brought in to make TiO2 respond to visible light. In this chapter, we introduce our previous works such as TiO2 nanorods with CdS quantum dots, noble metallic nanoparticles, coating TiO2 via atomic layer deposition (ALD), and so on.

[1]  Yiping Zhao,et al.  Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates , 2005 .

[2]  R. Wolters,et al.  Growth Kinetics and Oxidation Mechanism of ALD TiN Thin Films Monitored by In Situ Spectroscopic Ellipsometry , 2011 .

[3]  Jimmy C. Yu,et al.  A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2. , 2009, Environmental science & technology.

[4]  Prashant V Kamat,et al.  Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[5]  S. Zakeeruddin,et al.  Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[6]  S. Yin,et al.  Visible-light-induced photocatalytic activity of TiO2−xNy prepared by solvothermal process in urea–alcohol system , 2006 .

[7]  E. Palomares,et al.  Photo-induced charge transfer dynamics in efficient TiO2/CdS/CdSe sensitized solar cells , 2011 .

[8]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[9]  Suljo Linic,et al.  Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. , 2011, Journal of the American Chemical Society.

[10]  Zhengjun Zhang,et al.  A Simple Model to Describe the Rule of Glancing Angle Deposition , 2011 .

[11]  H. Kominami,et al.  Mineralization of organic acids in aqueous suspensions of gold nanoparticles supported on cerium(IV) oxide powder under visible light irradiation. , 2010, Chemical communications.

[12]  B. Yang,et al.  CdS-sensitized single-crystalline TiO2 nanorods and polycrystalline nanotubes for solar hydrogen generation – ERRATUM , 2013 .

[13]  Monica Lira-Cantu,et al.  Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells , 2011 .

[14]  Prashant V. Kamat,et al.  Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures , 2009 .

[15]  Zhengjun Zhang,et al.  Photocatalytic properties of TiO2 thin films obtained by glancing angle deposition , 2012 .

[16]  S. Cho,et al.  Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. , 2010, ACS applied materials & interfaces.

[17]  O. Akhavan,et al.  Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. , 2009, Journal of colloid and interface science.

[18]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[19]  S. De,et al.  Optical Properties of the Type-II Core−Shell TiO2@CdS Nanorods for Photovoltaic Applications , 2009 .

[20]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[21]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[22]  C. F. Ng,et al.  TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties , 2012 .

[23]  K. Hashimoto,et al.  Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films , 2004 .

[24]  Hui Zhao,et al.  Photoelectrochemical Performance of Multiple Semiconductors (CdS/CdSe/ZnS) Cosensitized TiO2 Photoelectrodes , 2012 .

[25]  Yu Yang,et al.  Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition , 2007 .

[26]  P. Salvador,et al.  Hole diffusion length in n‐TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis , 1984 .

[27]  P. Cheng,et al.  Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation , 2007 .

[28]  P. N. Lisboa-Filho,et al.  Structural and Electronic Effects of Incorporating Mn in TiO2 Films Grown by Sputtering: Anatase versus Rutile , 2012 .

[29]  Walter Z. Tang,et al.  Photocatalyzed oxidation pathways of 2,4-dichlorophenol by CdS in basic and acidic aqueous solutions , 1995 .

[30]  C. Low,et al.  The reduction of hydrogen peroxide at an Au-coated nanotubular TiO2 array , 2013, Journal of Applied Electrochemistry.

[31]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: II. Potentials of zero charge and “electrochemical” work functions , 1971 .

[32]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[33]  H. Teng,et al.  Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. , 2006, The journal of physical chemistry. B.

[34]  Zhu Yu,et al.  Morphology in-Design Deposition of HfO2 Thin Films , 2008 .

[35]  S. K. Pradhan,et al.  Growth of TiO2 nanorods by metalorganic chemical vapor deposition , 2003 .

[36]  S. Haque,et al.  PbS and CdS Quantum Dot‐Sensitized Solid‐State Solar Cells: “Old Concepts, New Results” , 2009 .

[37]  A. Selloni,et al.  Bulk and Surface Polarons in Photoexcited Anatase TiO2 , 2011 .

[38]  M. Azuma,et al.  Photoelectrochemical properties of hybrid WO3/TiO2 electrode. Effect of structures of WO3 on charge separation behavior , 2006 .

[39]  Xianzhi Fu,et al.  Surface Chlorination of TiO2-Based Photocatalysts: A Way to Remarkably Improve Photocatalytic Activity in Both UV and Visible Region , 2011 .

[40]  S. Sugihara,et al.  Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment , 2001 .

[41]  Lei Zhu,et al.  Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light , 2011 .

[42]  Eric T. Hoke,et al.  Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells , 2013 .

[43]  Yichun Liu,et al.  Rutile TiO2 nanowire array infiltrated with anatase nanoparticles as photoanode for dye-sensitized solar cells: enhanced cell performance via the rutile–anatase heterojunction , 2013 .

[44]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[45]  Wilson A. Smith,et al.  Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. , 2009, Small.

[46]  Jinhua Ye,et al.  Reduced TiO 2 nanotube arrays for photoelectrochemical water splitting † , 2013 .

[47]  Shuncheng Lee,et al.  Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. , 2006, Chemical communications.

[48]  X. Duan,et al.  Towards highly efficient photocatalysts using semiconductor nanoarchitectures , 2012 .

[49]  C. Yuan,et al.  Optimized CdS quantum dot-sensitized solar cell performance through atomic layer deposition of ultrathin TiO2 coating , 2012 .

[50]  Yanbiao Liu,et al.  Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation , 2011 .

[51]  Jiwon Bang,et al.  Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes , 2010 .

[52]  Y. Lai,et al.  Sonoelectrochemical synthesis of highly photoelectrochemically active TiO2 nanotubes by incorporating CdS nanoparticles , 2009, Nanotechnology.

[53]  J. Herrmann,et al.  Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination , 1984 .

[54]  Z. Y. Zhang,et al.  Optical and photocatalytic properties of oblique angle deposited TiO2 nanorod array , 2008 .

[55]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[56]  P. Milani,et al.  Nanostructured TiO2 Films with 2 eV Optical Gap , 2005 .

[57]  Junying Zhang,et al.  TiO2 film/Cu2O microgrid heterojunction with photocatalytic activity under solar light irradiation. , 2009, ACS applied materials & interfaces.

[58]  Q. Shen,et al.  Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. , 2011, Physical chemistry chemical physics : PCCP.

[59]  Nicholas G. Wakefield,et al.  Surface area characterization of obliquely deposited metal oxide nanostructured thin films. , 2010, Langmuir.

[60]  Chao-hai Wei,et al.  Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: A synergistic effect of lattice Pt4+ and surface PtO , 2015 .

[61]  Xiujian Zhao,et al.  Highly selective photocatalytic and sensing properties of 2D-ordered dome films of nano titania and nano Ag2+ doped titania , 2012 .

[62]  N. Miyata,et al.  Preparation and electrochromic properties of rf‐sputtered molybdenum oxide films , 1985 .