Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions

[1]  R. Auras,et al.  Chemical recycling of poly(lactic acid) by water-ethanol solutions , 2018 .

[2]  T. Marsh,et al.  Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites , 2018, Polymers.

[3]  T. Marsh,et al.  Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature , 2017 .

[4]  R. Preziosi,et al.  Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): A review , 2017 .

[5]  T. Marsh,et al.  Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions , 2017 .

[6]  Yiwei Ren,et al.  New advances in the biodegradation of Poly(lactic) acid , 2017 .

[7]  R. Auras,et al.  Poly(lactic acid)-Mass production, processing, industrial applications, and end of life. , 2016, Advanced drug delivery reviews.

[8]  C. Kositanont,et al.  Degradation of Poly(lactic acid) under Simulated Landfill Conditions , 2016 .

[9]  I. Hashmi,et al.  Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii , 2016 .

[10]  N. Sombatsompop,et al.  Formation of Escherichia coli biofilm on LLDPE sheets by incorporation of 2-hydroxypropyl-3-piperazinyl-quinoline carboxylic acid methacrylate or silver-substituted zeolite , 2016 .

[11]  Max J. Krause,et al.  Life-Cycle Assumptions of Landfilled Polylactic Acid Underpredict Methane Generation , 2016 .

[12]  N. Sombatsompop,et al.  Selection of a Pseudonocardia sp. RM423 that accelerates the biodegradation of poly(lactic) acid in submerged cultures and in soil microcosms , 2015 .

[13]  G. Robson,et al.  Isolation and characterisation of fungal communities associated with degradation and growth on the surface of poly(lactic) acid (PLA) in soil and compost , 2014 .

[14]  A. Sathya,et al.  Plant growth-promoting traits of Pseudomonas geniculata isolated from chickpea nodules , 2014, 3 Biotech.

[15]  Vincent Verney,et al.  Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid). , 2014, International journal of biological macromolecules.

[16]  P. Xu,et al.  Physiological and Biochemical Characterization of a Novel Nicotine-Degrading Bacterium Pseudomonas geniculata N1 , 2014, PloS one.

[17]  Kotiba Hamad,et al.  Recycling of waste from polymer materials: An overview of the recent works , 2013 .

[18]  Mal-Nam Kim,et al.  Biodegradation of poly(l-lactide) (PLA) exposed to UV irradiation by a mesophilic bacterium , 2013 .

[19]  Vincenzo Piemonte,et al.  Chemical Recycling of PLA: A Great Opportunity Towards the Sustainable Development? , 2013, Journal of Polymers and the Environment.

[20]  Sang-Do Ha,et al.  Biofilm formation in food industries: A food safety concern , 2013 .

[21]  Bruno De Wilde,et al.  Assessment of anaerobic degradation of Ingeo™ polylactides under accelerated landfill conditions , 2012 .

[22]  J. Chun,et al.  Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. , 2012, International journal of systematic and evolutionary microbiology.

[23]  S. Joshi,et al.  Assessment of the properties of poly(L-lactic acid) sheets produced with differing amounts of postconsumer recycled poly(L-lactic acid) , 2012 .

[24]  P. de Vos,et al.  Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. , 2011, International journal of systematic and evolutionary microbiology.

[25]  M. S. Huda,et al.  Biodegradability of injection molded bioplastic pots containing polylactic acid and poultry feather fiber. , 2011, Bioresource technology.

[26]  Ziqi Guo,et al.  Purification and characterization of poly(L‐lactic acid) depolymerase from Pseudomonas sp. strain DS04‐T , 2011 .

[27]  M. Arena,et al.  Degradation of poly (lactic acid) and nanocomposites by Bacillus licheniformis , 2011, Environmental science and pollution research international.

[28]  A. K. Haritash,et al.  Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. , 2009, Journal of hazardous materials.

[29]  Xianming Shi,et al.  Biofilm formation and food safety in food industries , 2009 .

[30]  S. Tokuyama,et al.  Development of fermentation process for PLA-degrading enzyme production by a new thermophilic Actinomadura sp. T16-1 , 2009 .

[31]  Christian Belloy,et al.  Polymer biodegradation: mechanisms and estimation techniques. , 2008, Chemosphere.

[32]  F. Hasan,et al.  Biological degradation of plastics: a comprehensive review. , 2008, Biotechnology advances.

[33]  J. Gu,et al.  Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: A review , 2007 .

[34]  Yutaka Tokiwa,et al.  Biodegradability and biodegradation of poly(lactide) , 2006, Applied Microbiology and Biotechnology.

[35]  Hideo Tanaka,et al.  Production of poly(l-lactide)-degrading enzyme by Amycolatopsis orientalis for biological recycling of poly(l-lactide) , 2006, Applied Microbiology and Biotechnology.

[36]  Hideo Tanaka,et al.  Microbial Poly(L-Lactide)-Degrading Enzyme Induced by Amino Acids, Peptides, and Poly(L-Amino Acids) , 2004 .

[37]  K. Tomita,et al.  Degradation of poly(L-lactic acid) by a newly isolated thermophile , 2004 .

[38]  Yutaka Tokiwa,et al.  Biodegradation of poly(l-lactide) , 2004, Biotechnology Letters.

[39]  Hideo Tanaka,et al.  Poly(l-lactide) degradation by Kibdelosporangium aridum , 2003, Biotechnology Letters.

[40]  M. Shimao,et al.  Biodegradation of plastics. , 2001, Current opinion in biotechnology.

[41]  Y. Kamio,et al.  Purification and Characterization of an Extracellular Poly(l-Lactic Acid) Depolymerase from a Soil Isolate,Amycolatopsis sp. Strain K104-1 , 2001, Applied and Environmental Microbiology.

[42]  H. Tanaka,et al.  Polylactide Degradation by an Amycolatopsis sp , 1997, Applied and environmental microbiology.

[43]  R. G. Sinclair The Case for Polylactic Acid as a Commodity Packaging Plastic , 1996 .

[44]  J. Buchanan-Smith,et al.  Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors , 1982, Applied and environmental microbiology.

[45]  H. Noller,et al.  Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. , 1981, Journal of molecular biology.

[46]  S. Tokuyama,et al.  Characterization of poly(L-lactide)-degrading enzyme produced by thermophilic filamentous bacteria Laceyella sacchari LP175. , 2014, The Journal of general and applied microbiology.

[47]  J. Gu,et al.  Methods Currently Used in Testing Microbiological Degradation and Deterioration of a Wide Range of Polymeric Materials with Various Degree of Degradability: A Review , 2005 .

[48]  S. Lumyong,et al.  Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand , 2002 .

[49]  M. Moriguchi,et al.  Isolation of a thermophilic poly-L-lactide degrading bacterium from compost and its enzymatic characterization. , 2001, Journal of bioscience and bioengineering.

[50]  Y. Tokiwa,et al.  Poly (L‐lactide)‐Degrading Enzyme Produced by Amycolatopsis sp. , 2001 .

[51]  Y. Oda,et al.  Degradation of Polylactide by Commercial Proteases , 2000 .

[52]  K. A. Taylor,et al.  A simple colorimetric assay for muramic acid and lactic acid , 1996 .

[53]  Donnie F. Williams Enzymic Hydrolysis of Polylactic Acid , 1981 .