Toward real-time particle tracking using an event-based dynamic vision sensor

Optically based measurements in high Reynolds number fluid flows often require high-speed imaging techniques. These cameras typically record data internally and thus are limited by the amount of onboard memory available. A novel camera technology for use in particle tracking velocimetry is presented in this paper. This technology consists of a dynamic vision sensor in which pixels operate in parallel, transmitting asynchronous events only when relative changes in intensity of approximately 10% are encountered with a temporal resolution of 1 μs. This results in a recording system whose data storage and bandwidth requirements are about 100 times smaller than a typical high-speed image sensor. Post-processing times of data collected from this sensor also increase to about 10 times faster than real time. We present a proof-of-concept study comparing this novel sensor with a high-speed CMOS camera capable of recording up to 2,000 fps at 1,024 × 1,024 pixels. Comparisons are made in the ability of each system to track dense (ρ >1 g/cm3) particles in a solid–liquid two-phase pipe flow. Reynolds numbers based on the bulk velocity and pipe diameter up to 100,000 are investigated.