Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane

Tb-doped ceria materials have been synthesized by the coprecipitation method. Cobalt oxide (2 mol %) has been added in order to improve the sinterability and conductivity. XRD measurements suggest that a part of the cobalt is incorporated in the ceria lattice. Ce1−xTbxO2−δ materials showed predominantly ionic conductivity, but the mixed ionic electronic conductivity can be tuned by modifying Tb and Co doping level and temperature range. The ambipolar conductivity was determined by galvanic method coupled with gas permeation and these results support the applicability of these materials as oxygen transport membranes at high temperature. Ce1−xTbxO2−δ +Co membranes are CO2 stable and yielded oxygen fluxes that can compete with reported perovskite materials. Oxygen diffusion and surface exchange coefficients in the range 1 × 10−5 to 1 × 10−4 cm2/s and 1 × 10−4 to 1 × 10−3 cm/s from 773 to 1023 K have been obtained by conductivity relaxation.

[1]  Shaomin Liu,et al.  High performance perovskite hollow fibres for oxygen separation , 2011 .

[2]  P. A. Jensen,et al.  Oxy-fuel combustion of solid fuels , 2010 .

[3]  Michael Modigell,et al.  Simulation of a membrane unit for oxyfuel power plants under consideration of realistic BSCF membrane properties , 2010 .

[4]  J. Caro,et al.  A coupling strategy to produce hydrogen and ethylene in a membrane reactor. , 2010, Angewandte Chemie.

[5]  Chun Xiang Lin,et al.  Ceramic membranes for gas processing in coal gasification , 2010 .

[6]  A. Hagen,et al.  Defect Chemistry and Thermomechanical Properties of Ce0.8Pr x Tb0.2 − x O2 − δ , 2010 .

[7]  H. Tuller,et al.  Defect Structure, Charge Transport Mechanisms, and Strain Effects in Sr4Fe6O12+δ Epitaxial Thin Films , 2010 .

[8]  K. Nordheden,et al.  A comparison of mixed-conducting oxygen-permeable membranes for CO2 reforming , 2009 .

[9]  J. Caro,et al.  Highly effective NO decomposition by in situ removal of inhibitor oxygen using an oxygen transporting membrane. , 2009, Chemical communications.

[10]  J. Ayawanna,et al.  Effects of cobalt metal addition on sintering and ionic conductivity of Sm(Y)-doped ceria solid electrolyte for SOFC , 2009 .

[11]  Amit Kumar,et al.  Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  Zongping Shao,et al.  Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite membranes for air separation , 2009 .

[13]  Shaomin Liu,et al.  Development of mixed conducting membranes for clean coal energy delivery , 2009 .

[14]  Jung Hoon Park,et al.  Oxygen permeation and stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membrane according to trace elements and oxygen partial pressure in synthetic air , 2009 .

[15]  D. P. Fagg,et al.  Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid , 2009 .

[16]  A. Hagen,et al.  Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ , 2008 .

[17]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[18]  Chen-Bin Wang,et al.  Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS , 2008 .

[19]  U. Guth,et al.  Oxygen transport properties of Ba0.5Sr0.5Co0.8Fe0.2O3 − x and Ca0.5Sr0.5Mn0.8Fe0.2O3 − x obtained from permeation and conductivity relaxation experiments , 2008 .

[20]  J. M. Serra,et al.  IT-SOFC supported on Mixed Oxygen Ionic-Electronic Conducting Composites , 2008 .

[21]  D. P. Fagg,et al.  High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids , 2007 .

[22]  K. Gademann,et al.  Total synthesis of complex cyanobacterial alkaloids without using protecting groups. , 2007, Angewandte Chemie.

[23]  L. C. Jonghe,et al.  Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide , 2007 .

[24]  A. Feldhoff,et al.  Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .

[25]  R. Bredesen,et al.  Dense ceramic membranes based on ion conducting oxides , 2007 .

[26]  P. Hendriksen,et al.  Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite , 2007 .

[27]  E. Wachsman,et al.  The role of point defects in the physical properties of nonstoichiometric ceria , 2007 .

[28]  D. P. Fagg,et al.  Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8-xPr0.2O2-δ, x = 0, 0.15, 0.2 , 2006 .

[29]  K. Sasaki,et al.  Surface effect on oxygen permeation through dense membrane of mixed-conductive LSCF perovskite-type oxide , 2006 .

[30]  Zongping Shao,et al.  Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation , 2006 .

[31]  Henricus J.M. Bouwmeester,et al.  Dense ceramic membranes for methane conversion , 2003 .

[32]  H. Yokokawa,et al.  Mass transport properties of Ce0.9Gd0.1O2−δ at the surface and in the bulk , 2002 .

[33]  Toshio Suzuki,et al.  RAMAN SCATTERING AND LATTICE DEFECTS IN NANOCRYSTALLINE CEO2 THIN FILMS , 2002 .

[34]  W. Huebner,et al.  Size-induced lattice relaxation in CeO 2 nanoparticles , 2001 .

[35]  J. Kilner,et al.  Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation , 2000 .

[36]  Y. Kawazoe,et al.  Origin of anomalous lattice expansion in oxide nanoparticles , 2000, Physical review letters.

[37]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[38]  Mogens Bjerg Mogensen,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[39]  H. Yoo,et al.  Chemical diffusivity of BaTiO3−δ: III. Conductivity–nonstoichiometry (δ) correlation in a mixed n/p regime , 1999 .

[40]  A. Virkar,et al.  Lattice Parameters and Densities of Rare‐Earth Oxide Doped Ceria Electrolytes , 1995 .

[41]  Dae‐Joon Kim,et al.  Lattice Parameters, Ionic Conductivities, and Solubility Limits in Fluorite‐Structure MO2 Oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] Solid Solutions , 1989 .

[42]  A. Kovalevsky,et al.  Oxygen permeability of mixed-conducting composite membranes: effects of phase interaction , 2006 .

[43]  Todd S. Stefanik,et al.  Ceria-based gas sensors , 2001 .