Habitability constraints by nutrient availability in atmospheres of rocky exoplanets

Abstract Life as we know it requires the presence of liquid water and the availability of nutrients, which are mainly based on the elements C, H, N, O, P and S (CHNOPS) and trace metal micronutrients. We aim to understand the presence of these nutrients within atmospheres that show the presence of water cloud condensates, potentially allowing the existence of aerial biospheres. In this paper, we introduce a framework of nutrient availability levels based on the presence of water condensates and the chemical state of the CHNOPS elements. These nutrient availability levels are applied to a set of atmospheric models based on different planetary surface compositions resulting in a range of atmospheric compositions. The atmospheric model is a bottom-to-top equilibrium chemistry atmospheric model which includes the atmosphere–crust interaction and the element depletion due to the formation of clouds. While the reduced forms of CNS are present at the water cloud base for most atmospheric compositions, P and metals are lacking. This indicates the potential bio-availability of CNS, while P and metals are limiting factors for aerial biospheres.

[1]  E. Kempton,et al.  Constraining the Thickness of TRAPPIST-1 b’s Atmosphere from Its JWST Secondary Eclipse Observation at 15 μm , 2023, The Astrophysical Journal Letters.

[2]  J. Valenti,et al.  High Tide or Riptide on the Cosmic Shoreline? A Water-rich Atmosphere or Stellar Contamination for the Warm Super-Earth GJ 486b from JWST Observations , 2023, The Astrophysical Journal Letters.

[3]  S. Seager,et al.  Methanol—A Poor Biosignature Gas in Exoplanet Atmospheres , 2022, The Astrophysical Journal.

[4]  B. Damer,et al.  Urability: A Property of Planetary Bodies That Can Support an Origin of Life. , 2022, Astrobiology.

[5]  J. Berthelier,et al.  High D/H ratios in water and alkanes in comet 67P/Churyumov-Gerasimenko measured with Rosetta/ROSINA DFMS , 2022, Astronomy & Astrophysics.

[6]  J. Fortney,et al.  Microphysics of Water Clouds in the Atmospheres of Y Dwarfs and Temperate Giant Planets , 2022, The Astrophysical Journal.

[7]  A. Youngblood,et al.  Effects of UV Stellar Spectral Uncertainty on the Chemistry of Terrestrial Atmospheres , 2022, The Astrophysical Journal.

[8]  K. Molaverdikhani,et al.  Toward RNA Life on Early Earth: From Atmospheric HCN to Biomolecule Production in Warm Little Ponds , 2022, 2201.00829.

[9]  R. Wordsworth,et al.  Prospects for Water Vapor Detection in the Atmospheres of Temperate and Arid Rocky Exoplanets around M-dwarf Stars , 2022, The Astrophysical Journal Letters.

[10]  A. Rae,et al.  Ancient and recent collisions revealed by phosphate minerals in the Chelyabinsk meteorite , 2021, Communications Earth & Environment.

[11]  A. Maggio,et al.  Extreme-ultraviolet- and X-Ray-driven Photochemistry of Gaseous Exoplanets , 2021, The Planetary Science Journal.

[12]  W. Bains,et al.  Constraints on the Production of Phosphine by Venusian Volcanoes , 2021, Universe.

[13]  A. Zerkle,et al.  The atmospheres of rocky exoplanets. II. Influence of surface composition on the diversity of cloud condensates , 2021, Astronomy & Astrophysics.

[14]  T. Mikal-Evans Detecting the proposed CH4-CO2 biosignature pair with the James Webb Space Telescope: TRAPPIST-1e and the effect of cloud/haze , 2021, 2111.09685.

[15]  T. Nordheim,et al.  Constraints on a potential aerial biosphere on Venus: II. Ultraviolet radiation , 2021, Icarus.

[16]  Zoe R. Todd,et al.  UV Transmission in Natural Waters on Prebiotic Earth , 2021, Astrobiology.

[17]  W. van Westrenen,et al.  Carbon Cycling and Habitability of Massive Earth-like Exoplanets , 2021, The Planetary Science Journal.

[18]  D. Ehrenreich,et al.  Day–night cloud asymmetry prevents early oceans on Venus but not on Earth , 2021, Nature.

[19]  T. Robinson,et al.  Detecting Oceans on Exoplanets with Phase-dependent Spectral Principal Component Analysis , 2021, The Planetary Science Journal.

[20]  B. Jackson,et al.  Phosphine Generation Pathways on Rocky Planets. , 2021, Astrobiology.

[21]  M. Way,et al.  Early Habitability and Crustal Decarbonation of a Stagnant‐Lid Venus , 2021, Journal of Geophysical Research: Planets.

[22]  N. Madhusudhan,et al.  Habitability and Biosignatures of Hycean Worlds , 2021, The Astrophysical Journal.

[23]  P. Rimmer,et al.  Detectable Abundance of Cyanoacetylene (HC3N) Predicted on Reduced Nitrogen-rich Super-Earth Atmospheres , 2021, 2107.13097.

[24]  S. Seager,et al.  Assessment of Ammonia as a Biosignature Gas in Exoplanet Atmospheres. , 2021, Astrobiology.

[25]  P. Rimmer,et al.  Hydroxide Salts in the Clouds of Venus: Their Effect on the Sulfur Cycle and Cloud Droplet pH , 2021, The Planetary Science Journal.

[26]  A. A. Belov,et al.  Exobiology of the Venusian Clouds: New Insights into Habitability through Terrestrial Models and Methods of Detection. , 2021, Astrobiology.

[27]  Marcus K. Dymond,et al.  Water activity in Venus’s uninhabitable clouds and other planetary atmospheres , 2021, Nature Astronomy.

[28]  R. Ferrière,et al.  Bayesian analysis of Enceladus’s plume data to assess methanogenesis , 2021, Nature Astronomy.

[29]  W. Bains,et al.  Possibilities for an Aerial Biosphere in Temperate Sub Neptune-Sized Exoplanet Atmospheres , 2021, Universe.

[30]  M. Claire,et al.  Photochemical modelling of atmospheric oxygen levels confirms two stable states , 2021, Earth and Planetary Science Letters.

[31]  F. Selsis,et al.  Main ways in which stars influence the climate and surface habitability of their planets , 2021, 2104.06391.

[32]  H. Lammer,et al.  Life as the Only Reason for the Existence of N2–O2-Dominated Atmospheres , 2021, Astronomy Reports.

[33]  B. Jakosky,et al.  Martian Hydrated Minerals: A Significant Water Sink , 2021, Journal of Geophysical Research: Planets.

[34]  K. Poppenhaeger,et al.  Destination exoplanet: Habitability conditions influenced by stellar winds properties , 2021, Astronomische Nachrichten.

[35]  P. Tackley,et al.  Hemispheric Tectonics on Super-Earth LHS 3844b , 2021, The Astrophysical Journal.

[36]  A. Lenardic,et al.  A Note on Planet Size and Cooling Rate , 2021, 2102.01077.

[37]  G. Tinetti,et al.  Detectability of Rocky-Vapour atmospheres on super-Earths with Ariel , 2021, Experimental Astronomy.

[38]  S. Okuzumi,et al.  Haze Formation on Triton , 2020, The Astrophysical Journal.

[39]  V. Bourrier,et al.  MOVES – IV. Modelling the influence of stellar XUV-flux, cosmic rays, and stellar energetic particles on the atmospheric composition of the hot Jupiter HD 189733b , 2020, 2012.12132.

[40]  H. Rauer,et al.  Detectability of biosignatures on LHS 1140 b , 2020, Astronomy & Astrophysics.

[41]  A. D. Feinstein,et al.  Persistence of flare-driven atmospheric chemistry on rocky habitable zone worlds , 2020, Nature Astronomy.

[42]  J. Leconte,et al.  Formation and dynamics of water clouds on temperate sub-Neptunes: the example of K2-18b , 2020, Astronomy & Astrophysics.

[43]  D. Samra,et al.  Coexistence of CH4, CO2, and H2O in exoplanet atmospheres , 2020, Astronomy & Astrophysics.

[44]  B. Schmitt,et al.  “Water” abundance at the surface of C-complex main-belt asteroids , 2020, Icarus.

[45]  D. Catling,et al.  Abundant Atmospheric Methane from Volcanism on Terrestrial Planets Is Unlikely and Strengthens the Case for Methane as a Biosignature , 2020, The Planetary Science Journal.

[46]  W. Bains,et al.  Phosphine on Venus Cannot Be Explained by Conventional Processes. , 2020, Astrobiology.

[47]  Sara Seager,et al.  Phosphine gas in the cloud decks of Venus , 2020, Nature Astronomy.

[48]  W. Bains,et al.  The Venusian Lower Atmosphere Haze as a Depot for Desiccated Microbial Life: A Proposed Life Cycle for Persistence of the Venusian Aerial Biosphere. , 2020, Astrobiology.

[49]  Edward Schwieterman,et al.  Constraining prebiotic chemistry through a better understanding of Earth’s earliest environments , 2020, 2008.04803.

[50]  F. Forget,et al.  Possible Atmospheric Diversity of Low Mass Exoplanets – Some Central Aspects , 2020, Space Science Reviews.

[51]  S. Kane,et al.  A Geologically Robust Procedure for Observing Rocky Exoplanets to Ensure that Detection of Atmospheric Oxygen Is a Modern Earth-like Biosignature , 2020, The Astrophysical Journal.

[52]  R. Ramirez A Complex Life Habitable Zone Based On Lipid Solubility Theory , 2020, Scientific Reports.

[53]  L. Observatory,et al.  The subsurface habitability of small, icy exomoons , 2020, Astronomy & Astrophysics.

[54]  C. Helling,et al.  The atmospheres of rocky exoplanets , 2020, Astronomy & Astrophysics.

[55]  N. Planavsky,et al.  Nutrient Supply to Planetary Biospheres From Anoxic Weathering of Mafic Oceanic Crust , 2020, Geophysical Research Letters.

[56]  F. Postberg,et al.  Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans , 2020, Space Science Reviews.

[57]  J. Fortney,et al.  Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b , 2019, The Astrophysical Journal.

[58]  H. Lammer,et al.  The Role of N2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats. , 2019, Astrobiology.

[59]  V. Martínez,et al.  Diving into Exoplanets: Are Water Seas the Most Common? , 2019, Astrobiology.

[60]  L. Kaltenegger,et al.  Lessons from early Earth: UV surface radiation should not limit the habitability of active M star systems , 2019, Monthly Notices of the Royal Astronomical Society.

[61]  Bertrand Mennesson,et al.  Detecting Earth-like Biosignatures on Rocky Exoplanets around Nearby Stars with Ground-based Extremely Large Telescopes , 2019, 1903.09523.

[62]  Yuka Fujii,et al.  Detecting Ocean Glint on Exoplanets Using Multiphase Mapping , 2018, The Astronomical Journal.

[63]  T. Encrenaz,et al.  A chemical survey of exoplanets with ARIEL , 2018, Experimental Astronomy.

[64]  Helmut Lammer,et al.  Origin and evolution of the atmospheres of early Venus, Earth and Mars , 2018 .

[65]  C. Dorn,et al.  Outgassing on stagnant-lid super-Earths , 2018, Astronomy & Astrophysics.

[66]  J. Blecic,et al.  Equilibrium chemistry down to 100 K , 2017, Astronomy & Astrophysics.

[67]  P. Rimmer,et al.  Exo-lightning radio emission: The case study of HAT-P-11b , 2017, 1711.08053.

[68]  T. Henning,et al.  Origin of the RNA world: The fate of nucleobases in warm little ponds , 2017, Proceedings of the National Academy of Sciences.

[69]  M. Ferus,et al.  High Energy Radical Chemistry Formation of HCN-rich Atmospheres on early Earth , 2017, Scientific Reports.

[70]  T. Spohn,et al.  The habitability of a stagnant-lid Earth , 2017, 1707.06051.

[71]  Shiladitya DasSarma,et al.  Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment , 2017, Astrobiology.

[72]  Shiladitya DasSarma,et al.  Exoplanet Biosignatures: A Framework for Their Assessment , 2017, Astrobiology.

[73]  K. Williford,et al.  Biological regulation of atmospheric chemistry en route to planetary oxygenation , 2017, Proceedings of the National Academy of Sciences.

[74]  P. Dufour,et al.  DOES A DIFFERENTIATED, CARBONATE-RICH, ROCKY OBJECT POLLUTE THE WHITE DWARF SDSS J104341.53+085558.2? , 2016, 1610.08016.

[75]  Aomawa L. Shields,et al.  The Habitability of Planets Orbiting M-dwarf Stars , 2016, 1610.05765.

[76]  E. Stüeken Nitrogen in Ancient Mud: A Biosignature? , 2016, Astrobiology.

[77]  M. Gurwell,et al.  Detection of CO and HCN in Pluto’s atmosphere with ALMA , 2016, 1606.03293.

[78]  G. Horneck,et al.  AstRoMap European Astrobiology Roadmap , 2016, Astrobiology.

[79]  Helmut Lammer,et al.  On the (anticipated) diversity of terrestrial planet atmospheres , 2015 .

[80]  J. Bredehöft,et al.  Water-rich planets: How habitable is a water layer deeper than on Earth? , 2015 .

[81]  Tom A. Nordheim,et al.  Constraints on a potential aerial biosphere on Venus: I. Cosmic rays , 2015 .

[82]  R. Bailey,et al.  IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS VI: PROPERTIES OF LARGE-SCALE DISCHARGE EVENTS , 2013, 1312.6789.

[83]  J. Bada,et al.  Enhanced Synthesis of Alkyl Amino Acids in Miller’s 1958 H2S Experiment , 2011, Origins of Life and Evolution of Biospheres.

[84]  L. Schaefer,et al.  VAPORIZATION OF THE EARTH: APPLICATION TO EXOPLANET ATMOSPHERES , 2011, 1108.4660.

[85]  W. McDonough,et al.  Chemical variations and regional diversity observed in MORB , 2010 .

[86]  S. Murchie,et al.  Geologic setting of serpentine deposits on Mars , 2010 .

[87]  H. Follmann,et al.  Darwin’s warm little pond revisited: from molecules to the origin of life , 2009, Naturwissenschaften.

[88]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[89]  E. Gaidos,et al.  Detecting the glint of starlight on the oceans of distant planets , 2008, 0801.1852.

[90]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[91]  Tori M Hoehler,et al.  An energy balance concept for habitability. , 2007, Astrobiology.

[92]  J. Spyromilio,et al.  The European Extremely Large Telescope (E-ELT) , 2007 .

[93]  Keita Yamada,et al.  Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era , 2006, Nature.

[94]  K. Lodders,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus , 2005, astro-ph/0511136.

[95]  Antonietta Quigg,et al.  THE ELEMENTAL COMPOSITION OF SOME MARINE PHYTOPLANKTON 1 , 2003 .

[96]  Heinrich D. Holland,et al.  Volcanic gases, black smokers, and the great oxidation event , 2002 .

[97]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[98]  J. Crovisier Comet Hale-Bopp (C/1995 O1) , 2001 .

[99]  Farid Salama,et al.  Carbon in the universe. , 1998, Science.

[100]  T. Owen,et al.  Measurements of 12C/13C, 14N/15N, and 32S/34S ratios in comet Hale-Bopp (C/1995 O1). , 1997, Science.

[101]  B. Fegley,et al.  The Oxidation State of the Lower Atmosphere and Surface of Venus , 1997 .

[102]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[103]  C. Woese,et al.  A proposal concerning the origin of life on the planet earth , 1979, Journal of Molecular Evolution.

[104]  P. C. Joshi,et al.  HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth , 1978, Journal of Molecular Evolution.

[105]  A. Cameron,et al.  Abundances of the elements in the solar system , 1973 .

[106]  C. Sagan,et al.  Life in the Clouds of Venus? , 1967, Nature.

[107]  H. Urey,et al.  Organic compound synthesis on the primitive earth. , 1959, Science.

[108]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[109]  C. Helling,et al.  The atmospheres of rocky exoplanets I. Outgassing of common rock and the stability of liquid water , 2020 .

[110]  Atmospheric disequilibrium as an exoplanet biosignature : Opportunities for next generation telescopes Thematic Area : Planetary Systems , 2019 .

[111]  J. Blecic,et al.  Equilibrium chemistry down to 100 K Impact of silicates and phyllosilicates on the carbon to oxygen ratio , 2018 .

[112]  F. Raulin,et al.  Formation of prebiochemical compounds in models of the primitive Earth's atmosphere , 2005, Origins of life.

[113]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[114]  G. Roberts,et al.  Biological nitrogen fixation. , 1993, Annual review of nutrition.

[115]  S.-S. Huang Occurrence of life in the universe. , 1963 .