Visual stimulation of saccades in magnetically tethered Drosophila

SUMMARY Flying fruit flies, Drosophila melanogaster, perform `body saccades', in which they change heading by about 90° in roughly 70 ms. In free flight, visual expansion can evoke saccades, and saccade-like turns are triggered by similar stimuli in tethered flies. However, because the fictive turns in rigidly tethered flies follow a much longer time course, the extent to which these two behaviors share a common neural basis is unknown. A key difference between tethered and free flight conditions is the presence of additional sensory cues in the latter, which might serve to modify the time course of the saccade motor program. To study the role of sensory feedback in saccades, we have developed a new preparation in which a fly is tethered to a fine steel pin that is aligned within a vertically oriented magnetic field, allowing it to rotate freely around its yaw axis. In this experimental paradigm, flies perform rapid turns averaging 35° in 80 ms, similar to the kinematics of free flight saccades. Our results indicate that tethered and free flight saccades share a common neural basis, but that the lack of appropriate feedback signals distorts the behavior performed by rigidly fixed flies. Using our new paradigm, we also investigated the features of visual stimuli that elicit saccades. Our data suggest that saccades are triggered when expanding objects reach a critical threshold size, but that their timing depends little on the precise time course of expansion. These results are consistent with expansion detection circuits studied in other insects, but do not exclude other models based on the integration of local movement detectors.

[1]  S. N. Fry,et al.  The aerodynamics of hovering flight in Drosophila , 2005, Journal of Experimental Biology.

[2]  M. Dickinson,et al.  The production of elevated flight force compromises manoeuvrability in the fruit fly Drosophila melanogaster. , 2001, The Journal of experimental biology.

[3]  R. Hengstenberg,et al.  The halteres of the blowfly Calliphora , 1994, Journal of Comparative Physiology A.

[4]  W. Nachtigall,et al.  Neuro-muscular control of dipteran flight. , 1967, The Journal of experimental biology.

[5]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[6]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[7]  Michael H Dickinson,et al.  Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. , 2002, The Journal of experimental biology.

[8]  M. Dickinson,et al.  The aerodynamic effects of wing–wing interaction in flapping insect wings , 2005, Journal of Experimental Biology.

[9]  M. Dickinson,et al.  Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  G. Nalbach The halteres of the blowfly Calliphora , 1993, Journal of Comparative Physiology A.

[11]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[12]  S. N. Fry,et al.  The Aerodynamics of Free-Flight Maneuvers in Drosophila , 2003, Science.

[13]  R. Hengstenberg,et al.  Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.

[14]  J. Trimarchi,et al.  Flight initiations in Drosophila melanogaster are mediated by several distinct motor patterns , 1995, Journal of Comparative Physiology A.

[15]  A. G. Greenhill Kinematics and Dynamics , 1888, Nature.

[16]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[17]  Michael H Dickinson,et al.  Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila , 2004, Journal of Experimental Biology.

[18]  B. Frost,et al.  Computation of different optical variables of looming objects in pigeon nucleus rotundus neurons , 1998, Nature Neuroscience.

[19]  Alexander Borst,et al.  Visual information processing in the fly's landing system , 1988, Journal of Comparative Physiology A.

[20]  M. Land Motion and vision: why animals move their eyes , 1999, Journal of Comparative Physiology A.

[21]  A. Borst How Do Flies Land?From behavior to neuronal circuits , 1990 .

[22]  G. Laurent,et al.  Computation of Object Approach by a Wide-Field, Motion-Sensitive Neuron , 1999, The Journal of Neuroscience.

[23]  H. Autrum,et al.  Electrophysiological analysis of the visual systems in insects. , 1958, Experimental cell research.

[24]  J. Levine,et al.  Giant neuron input in mutant and wild typeDrosophila , 1974, Journal of comparative physiology.

[25]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[26]  S. B. Laughlin,et al.  Fast and slow photoreceptors — a comparative study of the functional diversity of coding and conductances in the Diptera , 1993, Journal of Comparative Physiology A.

[27]  R. Wyman,et al.  Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.

[28]  S. Bäckström,et al.  The inhibitory effect of glutathione on some processes of animalization. , 1958 .

[29]  Michael H Dickinson,et al.  Spatial organization of visuomotor reflexes in Drosophila , 2004, Journal of Experimental Biology.

[30]  J. Levine,et al.  Structure and function of the giant motorneuron ofDrosophila melanogaster , 1973, Journal of comparative physiology.

[31]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[32]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.

[33]  C. David The relationship between body angle and flight speed in free‐flying Drosophila , 1978 .

[34]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[35]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[36]  W P Chan,et al.  Visual input to the efferent control system of a fly's "gyroscope". , 1998, Science.

[37]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[38]  T. Weis-Fogh Quick estimates of flight fitness in hovering animals , 1973 .

[39]  K. Götz Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .

[40]  M. Egelhaaf,et al.  Chasing a dummy target: smooth pursuit and velocity control in male blowflies , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  W. Gronenberg,et al.  Descending neurons supplying the neck and flight motor of diptera: Organization and neuroanatomical relationships with visual pathways , 1990, The Journal of comparative neurology.

[42]  J. Pringle The gyroscopic mechanism of the halteres of Diptera , 1948, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[43]  A. L. Yarbus Eye movements during the examination of complicated objects. , 1961, Biofizika.

[44]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[45]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[46]  M. Egelhaaf,et al.  Vision in flying insects , 2002, Current Opinion in Neurobiology.

[47]  G. Laurent,et al.  Invariance of Angular Threshold Computation in a Wide-Field Looming-Sensitive Neuron , 2001, The Journal of Neuroscience.

[48]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[49]  P. Simmons,et al.  Gliding behaviour elicited by lateral looming stimuli in flying locusts , 2004, Journal of Comparative Physiology A.

[50]  Yarbus Al Eye movements during the examination of complicated objects. , 1961 .

[51]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[52]  M. Heisenberg,et al.  Flight control during ‘free yaw turns’ inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[53]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[54]  M. Egelhaaf,et al.  The nonlinear mechanism of direction selectivity in the fly motion detection system , 2004, Naturwissenschaften.

[55]  Holger G. Krapp,et al.  Wide-field, motion-sensitive neurons and matched filters for optic flow fields , 2000, Biological Cybernetics.