The Sun at GeV--TeV Energies: A New Laboratory for Astroparticle Physics

The Sun is an excellent laboratory for astroparticle physics but remains poorly understood at GeV--TeV energies. Despite the immense relevance for both cosmic-ray propagation and dark matter searches, only in recent years has the Sun become a target for precision gamma-ray astronomy with the Fermi-LAT instrument. Among the most surprising results from the observations is a hard excess of GeV gamma-ray flux that strongly anti-correlates with solar activity, especially at the highest energies accessible to Fermi-LAT. Most of the observed properties of the gamma-ray emission cannot be explained by existing models of cosmic-ray interactions with the solar atmosphere. GeV--TeV gamma-ray observations of the Sun spanning an entire solar cycle would provide key insights into the origin of these gamma rays, and consequently improve our understanding of the Sun's environment as well as the foregrounds for new physics searches, such as dark matter. These can be complemented with new observations with neutrinos and cosmic rays. Together these observations make the Sun a new testing ground for particle physics in dynamic environments.

[1]  J. P. Harding,et al.  Science Case for a Wide Field-of-View Very-High-Energy Gamma-ray Observatory in the Southern Hemisphere , 2019, 1902.08429.

[2]  Danzengluobu,et al.  Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment , 2019, The Astrophysical Journal.

[3]  T. B. Watson,et al.  Detection of the Temporal Variation of the Sun's Cosmic Ray Shadow with the IceCube Detector , 2018, The Astrophysical Journal.

[4]  J. A. Garc'ia-Gonz'alez,et al.  First HAWC observations of the Sun constrain steady TeV gamma-ray emission , 2018, Physical Review D.

[5]  J. A. Garc'ia-Gonz'alez,et al.  Constraints on spin-dependent dark matter scattering with long-lived mediators from TeV observations of the Sun with HAWC , 2018, Physical Review D.

[6]  John F. Beacom,et al.  Unexpected dip in the solar gamma-ray spectrum , 2018, Physical Review D.

[7]  J. Beacom,et al.  Evidence for a New Component of High-Energy Solar Gamma-Ray Production. , 2018, Physical review letters.

[8]  Danzengluobu,et al.  Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun. , 2018, Physical review letters.

[9]  L. A. Antonelli,et al.  Science with the Cherenkov Telescope Array , 2017, 1709.07997.

[10]  N. Giglietto,et al.  Solar gamma rays and modulation of cosmic rays in the inner heliosphere , 2017, 1712.09745.

[11]  M. Masip High energy neutrinos from the Sun , 2017, 1706.01290.

[12]  J. Edsjö,et al.  Neutrinos from cosmic ray interactions in the Sun , 2017, 1704.02892.

[13]  John F. Beacom,et al.  Solar Atmospheric Neutrinos: A New Neutrino Floor for Dark Matter Searches , 2017, 1703.10280.

[14]  A. Fedynitch,et al.  Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches , 2017, 1703.07798.

[15]  A. Widmark Thermalization time scales for WIMP capture by the Sun in effective theories , 2017, 1703.06878.

[16]  John F. Beacom,et al.  Powerful solar signatures of long-lived dark mediators , 2017, 1703.04629.

[17]  S. Palomares-Ruiz,et al.  Dark matter in the Sun: scattering off electrons vs nucleons , 2017, 1702.02768.

[18]  A. Herrero,et al.  Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun , 2017, 1701.08863.

[19]  P. Tanedo,et al.  Dark Photons from Captured Inelastic Dark Matter Annihilation: Charged Particle Signatures , 2017, 1701.03168.

[20]  J. G. Gonzalez,et al.  Search for annihilating dark matter in the Sun with 3 years of IceCube data , 2016, 1612.05949.

[21]  John F. Beacom,et al.  TeV Solar Gamma Rays From Cosmic-Ray Interactions , 2016, 1612.02420.

[22]  K. Freese,et al.  Dark matter capture, subdominant WIMPs, and neutrino observatories , 2016, 1611.09665.

[23]  A. Heijboer,et al.  Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope , 2016, 1603.02228.

[24]  Curtis N. James,et al.  A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope , 2016, 1602.07000.

[25]  Jonathan L. Feng,et al.  Detecting dark matter through dark photons from the Sun: Charged particle signatures , 2016 .

[26]  John F. Beacom,et al.  First observation of time variation in the solar-disk gamma-ray flux with Fermi , 2015, 1508.06276.

[27]  S. Kim,et al.  Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande. , 2015, Physical review letters.

[28]  C. Rott,et al.  Solar WIMPs unravelled: Experiments, astrophysical uncertainties, and interactive tools , 2014, 1509.08230.

[29]  A. Strong,et al.  A software package for Stellar and solar Inverse Compton emission: StellarICs , 2013, 1303.5491.

[30]  C. Rott,et al.  Enhanced sensitivity to dark matter self-annihilations in the Sun using neutrino spectral information , 2011, 1107.3182.

[31]  N. Bell,et al.  Enhanced neutrino signals from dark matter annihilation in the Sun via metastable mediators , 2011, 1102.2958.

[32]  M. Papucci,et al.  Searches for long lived neutral particles , 2009, 0910.4160.

[33]  P. Schuster,et al.  Terrestrial and Solar Limits on Long-Lived Particles in a Dark Sector , 2009, 0910.1602.

[34]  Brian Batell,et al.  Solar Gamma Rays Powered by Secluded Dark Matter , 2009, 0910.1567.

[35]  D. Hooper,et al.  Kaluza-Klein Dark Matter And Neutrinos From Annihilation In The Sun , 2009, 0908.0899.

[36]  A. Peter Dark matter in the solar system II: WIMP annihilation rates in the Sun , 2009, 0902.1347.

[37]  A. Strong,et al.  Gamma-ray emission from the solar halo and disk: a study with EGRET data , 2008, 0801.2178.

[38]  A. Strong,et al.  Inverse-Compton emission from halos around stars , 2007, 0709.3841.

[39]  A. Strong,et al.  Gamma rays from halos around stars and the Sun , 2006, astro-ph/0607563.

[40]  J. Lundberg,et al.  Weakly interacting massive particle diffusion in the solar system including solar depletion and its effect on Earth capture rates , 2004, astro-ph/0401113.

[41]  J. Edsjö NEUTRINO-INDUCED MUON FLUXES FROM NEUTRALINO ANNIHILATIONS IN THE SUN AND IN THE EARTH , 1995 .

[42]  A. Gould Cosmological density of WIMPs from solar and terrestrial annihilations , 1992 .

[43]  T. Gaisser,et al.  Signatures of cosmic-ray interactions on the solar surface , 1991 .

[44]  J. Silk,et al.  The photino, the sun, and high-energy neutrinos. , 1985, Physical review letters.

[45]  S. Digel,et al.  Inverse Compton Scattering on Solar Photons, Heliospheric Modulation, and Neutrino Astrophysics , 2006 .