The Sun at GeV--TeV Energies: A New Laboratory for Astroparticle Physics
暂无分享,去创建一个
S. Y. BenZvi | J. F. Beacom | M. U. Nisa | B. Zhou | S. BenZvi | J. Beacom | A. Peter | R. Leane | M. Nisa | K. Ng | T. Linden | Bei Zhou | R. K. Leane | T. Linden | K.C.Y. Ng | A.H.G. Peter | B. Zhou
[1] J. P. Harding,et al. Science Case for a Wide Field-of-View Very-High-Energy Gamma-ray Observatory in the Southern Hemisphere , 2019, 1902.08429.
[2] Danzengluobu,et al. Search for Gamma-Ray Emission from the Sun during Solar Minimum with the ARGO-YBJ Experiment , 2019, The Astrophysical Journal.
[3] T. B. Watson,et al. Detection of the Temporal Variation of the Sun's Cosmic Ray Shadow with the IceCube Detector , 2018, The Astrophysical Journal.
[4] J. A. Garc'ia-Gonz'alez,et al. First HAWC observations of the Sun constrain steady TeV gamma-ray emission , 2018, Physical Review D.
[5] J. A. Garc'ia-Gonz'alez,et al. Constraints on spin-dependent dark matter scattering with long-lived mediators from TeV observations of the Sun with HAWC , 2018, Physical Review D.
[6] John F. Beacom,et al. Unexpected dip in the solar gamma-ray spectrum , 2018, Physical Review D.
[7] J. Beacom,et al. Evidence for a New Component of High-Energy Solar Gamma-Ray Production. , 2018, Physical review letters.
[8] Danzengluobu,et al. Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun. , 2018, Physical review letters.
[9] L. A. Antonelli,et al. Science with the Cherenkov Telescope Array , 2017, 1709.07997.
[10] N. Giglietto,et al. Solar gamma rays and modulation of cosmic rays in the inner heliosphere , 2017, 1712.09745.
[11] M. Masip. High energy neutrinos from the Sun , 2017, 1706.01290.
[12] J. Edsjö,et al. Neutrinos from cosmic ray interactions in the Sun , 2017, 1704.02892.
[13] John F. Beacom,et al. Solar Atmospheric Neutrinos: A New Neutrino Floor for Dark Matter Searches , 2017, 1703.10280.
[14] A. Fedynitch,et al. Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches , 2017, 1703.07798.
[15] A. Widmark. Thermalization time scales for WIMP capture by the Sun in effective theories , 2017, 1703.06878.
[16] John F. Beacom,et al. Powerful solar signatures of long-lived dark mediators , 2017, 1703.04629.
[17] S. Palomares-Ruiz,et al. Dark matter in the Sun: scattering off electrons vs nucleons , 2017, 1702.02768.
[18] A. Herrero,et al. Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun , 2017, 1701.08863.
[19] P. Tanedo,et al. Dark Photons from Captured Inelastic Dark Matter Annihilation: Charged Particle Signatures , 2017, 1701.03168.
[20] J. G. Gonzalez,et al. Search for annihilating dark matter in the Sun with 3 years of IceCube data , 2016, 1612.05949.
[21] John F. Beacom,et al. TeV Solar Gamma Rays From Cosmic-Ray Interactions , 2016, 1612.02420.
[22] K. Freese,et al. Dark matter capture, subdominant WIMPs, and neutrino observatories , 2016, 1611.09665.
[23] A. Heijboer,et al. Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope , 2016, 1603.02228.
[24] Curtis N. James,et al. A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope , 2016, 1602.07000.
[25] Jonathan L. Feng,et al. Detecting dark matter through dark photons from the Sun: Charged particle signatures , 2016 .
[26] John F. Beacom,et al. First observation of time variation in the solar-disk gamma-ray flux with Fermi , 2015, 1508.06276.
[27] S. Kim,et al. Search for neutrinos from annihilation of captured low-mass dark matter particles in the sun by super-kamiokande. , 2015, Physical review letters.
[28] C. Rott,et al. Solar WIMPs unravelled: Experiments, astrophysical uncertainties, and interactive tools , 2014, 1509.08230.
[29] A. Strong,et al. A software package for Stellar and solar Inverse Compton emission: StellarICs , 2013, 1303.5491.
[30] C. Rott,et al. Enhanced sensitivity to dark matter self-annihilations in the Sun using neutrino spectral information , 2011, 1107.3182.
[31] N. Bell,et al. Enhanced neutrino signals from dark matter annihilation in the Sun via metastable mediators , 2011, 1102.2958.
[32] M. Papucci,et al. Searches for long lived neutral particles , 2009, 0910.4160.
[33] P. Schuster,et al. Terrestrial and Solar Limits on Long-Lived Particles in a Dark Sector , 2009, 0910.1602.
[34] Brian Batell,et al. Solar Gamma Rays Powered by Secluded Dark Matter , 2009, 0910.1567.
[35] D. Hooper,et al. Kaluza-Klein Dark Matter And Neutrinos From Annihilation In The Sun , 2009, 0908.0899.
[36] A. Peter. Dark matter in the solar system II: WIMP annihilation rates in the Sun , 2009, 0902.1347.
[37] A. Strong,et al. Gamma-ray emission from the solar halo and disk: a study with EGRET data , 2008, 0801.2178.
[38] A. Strong,et al. Inverse-Compton emission from halos around stars , 2007, 0709.3841.
[39] A. Strong,et al. Gamma rays from halos around stars and the Sun , 2006, astro-ph/0607563.
[40] J. Lundberg,et al. Weakly interacting massive particle diffusion in the solar system including solar depletion and its effect on Earth capture rates , 2004, astro-ph/0401113.
[41] J. Edsjö. NEUTRINO-INDUCED MUON FLUXES FROM NEUTRALINO ANNIHILATIONS IN THE SUN AND IN THE EARTH , 1995 .
[42] A. Gould. Cosmological density of WIMPs from solar and terrestrial annihilations , 1992 .
[43] T. Gaisser,et al. Signatures of cosmic-ray interactions on the solar surface , 1991 .
[44] J. Silk,et al. The photino, the sun, and high-energy neutrinos. , 1985, Physical review letters.
[45] S. Digel,et al. Inverse Compton Scattering on Solar Photons, Heliospheric Modulation, and Neutrino Astrophysics , 2006 .