Risk-averse feasible policies for large-scale multistage stochastic linear programs

We consider risk-averse formulations of stochastic linear programs having a structure that is common in real-life applications. Specifically, the optimization problem corresponds to controlling over a certain horizon a system whose dynamics is given by a transition equation depending affinely on an interstage dependent stochastic process. We put in place a rolling-horizon time consistent policy. For each time step, a risk-averse problem with constraints that are deterministic for the current time step and uncertain for future times is solved. To each uncertain constraint corresponds both a chance and a Conditional Value-at-Risk constraint. We show that the resulting risk-averse problems are numerically tractable, being at worst conic quadratic programs. For the particular case in which uncertainty appears only on the right-hand side of the constraints, such risk-averse problems are linear programs. We show how to write dynamic programming equations for these problems and define robust recourse functions that can be approximated recursively by cutting planes. The methodology is assessed and favourably compared with Stochastic Dual Dynamic Programming on a real size water-resource planning problem.

[1]  Masoumeh Kazemi Zanjani,et al.  A multi-stage stochastic programming approach for production planning with uncertainty in the quality of raw materials and demand , 2010 .

[2]  W. Romisch,et al.  Dynamic risk management in electricity portfolio optimization via polyhedral risk functionals , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[3]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[4]  Frode Rømo,et al.  Optimization Models for the Natural Gas Value Chain , 2007, Geometric Modelling, Numerical Simulation, and Optimization.

[5]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[6]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[7]  S. Brignol,et al.  Risk management applied to weekly generation scheduling , 1999, IEEE Power Engineering Society. 1999 Winter Meeting (Cat. No.99CH36233).

[8]  S. Wallace,et al.  Stochastic Programming Models in Energy , 2003 .

[9]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[10]  Warrren B Powell,et al.  Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse , 1999 .

[11]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[12]  A. Charnes,et al.  Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints , 1963 .

[13]  Vincent Guigues,et al.  Robust production management , 2009 .

[14]  Uerj Cepel Cepel,et al.  Chain of Optimization Models for Setting the Energy Dispatch and Spot Price in the Brazilian System M.E.P.Maceira L.A.Terry F.S.Costa J.M.Damázio A.C.G.Melo , 2002 .

[15]  Werner Römisch,et al.  Polyhedral risk measures in electricity portfolio optimization , 2004 .

[16]  Abraham Charnes,et al.  Chance Constraints and Normal Deviates , 1962 .

[17]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[18]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[19]  Abb Switzerland,et al.  Handling Infeasibilities when Applying Benders Decomposition to Scheduling Optimization , 2006 .

[20]  Samer Takriti,et al.  Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem , 2000, Oper. Res..

[21]  G. Brunnett Geometric Modelling , 1995, Computing Supplement.

[22]  W. K. Haneveld Duality in Stochastic Linear and Dynamic Programming , 1986 .

[23]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[24]  Alexander Shapiro,et al.  On a time consistency concept in risk averse multistage stochastic programming , 2009, Oper. Res. Lett..

[25]  Werner Römisch,et al.  Sampling-Based Decomposition Methods for Multistage Stochastic Programs Based on Extended Polyhedral Risk Measures , 2012, SIAM J. Optim..

[26]  J. M. Damázio,et al.  The use of PAR(p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the Brazilian hydropower system , 2005, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[27]  Hartmut Noltemeier,et al.  Geometric Modelling , 1998, Computing Supplement.

[28]  Knut-Andreas Lie,et al.  Geometric Modelling, Numerical Simulation, and Optimization - Applied Mathematics at SINTEF , 2007, Geometric Modelling, Numerical Simulation, and Optimization.

[29]  Vincent Guigues,et al.  SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning , 2014, Comput. Optim. Appl..

[30]  Birger Mo,et al.  Integrated risk management of hydro power scheduling and contract management , 2001 .

[31]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[32]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..

[33]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[34]  G. Pflug,et al.  Modeling, Measuring and Managing Risk , 2008 .

[35]  András Prékopa Static Stochastic Programming Models , 1995 .

[36]  Alexander Shapiro,et al.  Conditional Risk Mappings , 2005, Math. Oper. Res..

[37]  Andrew B. Philpott,et al.  On the convergence of stochastic dual dynamic programming and related methods , 2008, Oper. Res. Lett..

[38]  Claudia A. Sagastizábal,et al.  The value of rolling-horizon policies for risk-averse hydro-thermal planning , 2012, Eur. J. Oper. Res..

[39]  Jingxian Wu,et al.  Flexible lognormal sum approximation method , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[40]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[41]  François Oustry,et al.  Robust mid-term power generation management , 2009 .

[42]  Maarten H. van der Vlerk,et al.  Integrated Chance Constraints: Reduced Forms and an Algorithm , 2006, Comput. Manag. Sci..

[43]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[44]  Lihua Yu,et al.  Decision Aids for Scheduling and Hedging (DASH) in deregulated electricity markets: a stochastic programming approach to power portfolio optimization , 2002, Proceedings of the Winter Simulation Conference.

[45]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[46]  Claudia A. Sagastizábal,et al.  Exploiting the structure of autoregressive processes in chance-constrained multistage stochastic linear programs , 2012, Oper. Res. Lett..

[47]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[48]  Norman C. Beaulieu,et al.  Estimating the distribution of a sum of independent lognormal random variables , 1995, IEEE Trans. Commun..

[49]  Arkadi Nemirovski,et al.  Selected topics in robust convex optimization , 2007, Math. Program..

[50]  Darinka Dentcheva,et al.  Optimization with Stochastic Dominance Constraints , 2003, SIAM J. Optim..

[51]  A. Ruszczynski Stochastic Programming Models , 2003 .