The rise of army ants and their relatives: diversification of specialized predatory doryline ants

BackgroundArmy ants are dominant invertebrate predators in tropical and subtropical terrestrial ecosystems. Their close relatives within the dorylomorph group of ants are also highly specialized predators, although much less is known about their biology. We analyzed molecular data generated from 11 nuclear genes to infer a phylogeny for the major dorylomorph lineages, and incorporated fossil evidence to infer divergence times under a relaxed molecular clock.ResultsBecause our results indicate that one subfamily and several genera of dorylomorphs are non-monophyletic, we propose to subsume the six previous dorylomorph subfamilies into a single subfamily, Dorylinae. We find the monophyly of Dorylinae to be strongly supported and estimate the crown age of the group at 87 (74–101) million years. Our phylogenetic analyses provide only weak support for army ant monophyly and also call into question a previous hypothesis that army ants underwent a fundamental split into New World and Old World lineages. Outside the army ants, our phylogeny reveals for the first time many old, distinct lineages in the Dorylinae. The genus Cerapachys is shown to be non-monophyletic and comprised of multiple lineages scattered across the Dorylinae tree. We recover, with strong support, novel relationships among these Cerapachys-like clades and other doryline genera, but divergences in the deepest parts of the tree are not well resolved. We find the genus Sphinctomyrmex, characterized by distinctive abdominal constrictions, to consist of two separate lineages with convergent morphologies, one inhabiting the Old World and the other the New World tropics.ConclusionsWhile we obtain good resolution in many parts of the Dorylinae phylogeny, relationships deep in the tree remain unresolved, with major lineages joining each other in various ways depending upon the analytical method employed, but always with short internodes. This may be indicative of rapid radiation in the early history of the Dorylinae, but additional molecular data and more complete species sampling are needed for confirmation. Our phylogeny now provides a basic framework for comparative biological analyses, but much additional study on the behavior and morphology of doryline species is needed, especially investigations directed at the non-army ant taxa.

[1]  M. Kaspari,et al.  Extraordinary Predation by the Neotropical Army Ant Cheliomyrmex andicola: Implications for the Evolution of the Army Ant Syndrome 1 , 2005 .

[2]  P. S. Ward Integrating molecular phylogenetic results into ant taxonomy (Hymenoptera: Formicidae) , 2011 .

[3]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[4]  Hannah M. Wood,et al.  Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the palpimanoid spiders. , 2013, Systematic biology.

[5]  F. Ravary,et al.  The reproductive cycle of thelytokous colonies of Cerapachys biroi Forel (Formicidae, Cerapachyinae) , 2002, Insectes Sociaux.

[6]  M. Borowiec New ant species related to Cerapachys sexspinus and discussion of the status of Yunodorylus (Hymenoptera: Formicidae) , 2009 .

[7]  A. Wild,et al.  Three new species of Leptanilloides Mann from Andean Ecuador (Formicidae: Leptanilloidinae) , 2006 .

[8]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[9]  J. Delabie,et al.  Revision of the Neotropical ant subfamily Leptanilloidinae , 1999 .

[10]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[11]  C. Moreau,et al.  Phylogeny of the Ants: Diversification in the Age of Angiosperms , 2006, Science.

[12]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[13]  J. Boomsma,et al.  A molecular phylogeny of Dorylus army ants provides evidence for multiple evolutionary transitions in foraging niche , 2007, BMC Evolutionary Biology.

[14]  B. Bolton Army ants reassessed: the phylogeny and classification of the doryline section (Hymenoptera, Formicidae) , 1990 .

[15]  M. Suchard,et al.  Bayesian selection of continuous-time Markov chain evolutionary models. , 2001, Molecular biology and evolution.

[16]  T. Schultz,et al.  Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. , 2010, Systematic biology.

[17]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[18]  X. Zhenghui Two New Genera of Ant Subfamilies Dorylinae and Ponerinae (Hymenoptera:Formicidae) From Yunnan,China , 2000 .

[19]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[20]  Maureen Kearney,et al.  Fragmentary taxa, missing data, and ambiguity: mistaken assumptions and conclusions. , 2002, Systematic biology.

[21]  P. S. Ward Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae)* , 2007 .

[22]  S. O’Brien,et al.  Placental mammal diversification and the Cretaceous–Tertiary boundary , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Phillips Branch-length estimation bias misleads molecular dating for a vertebrate mitochondrial phylogeny. , 2009, Gene.

[24]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[25]  D. Penny,et al.  Genome-scale phylogeny and the detection of systematic biases. , 2004, Molecular biology and evolution.

[26]  P. S. Ward,et al.  Rediscovery of the ant genus Amyrmex Kusnezov (Hymenoptera: Formicidae) and its transfer from Dolichoderinae to Leptanilloidinae , 2009 .

[27]  R. Matthews,et al.  Ants. , 1898, Science.

[28]  Subfamily Dolichoderinae ANTS OF THE DOMINICAN AMBER ( HYMENOPTERA : FORMICIDAE ) , 2011 .

[29]  B. Bolton Synopsis and classification of Formicidae , 2003 .

[30]  Seraina Klopfstein,et al.  A Total-Evidence Approach to Dating with Fossils, Applied to the Early Radiation of the Hymenoptera , 2012, Systematic biology.

[31]  Faisal Ababneh,et al.  The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. , 2004, Systematic biology.

[32]  W. Mackay A revision of the ant genus Acanthostichus (Hymenoptera: Formicidae) , 1996 .

[33]  W. M. Wheeler Observations on Army Ants in British Guiana , 1921 .

[34]  K. Abromeit Music Received , 2023, Notes.

[35]  A. Pyron,et al.  Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. , 2011, Systematic biology.

[36]  P. S. Ward,et al.  Molecular and morphological evidence for three sympatric species of Leptanilla (Hymenoptera: Formicidae) on the Greek island of Rhodes , 2012 .

[37]  T. Schultz,et al.  Assembling the ant "Tree of Life" (Hymenoptera: Formicidae) , 2005 .

[38]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[39]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[40]  H. Ota,et al.  Accommodating heterogenous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards. , 2011, Systematic biology.

[41]  P. S. Ward,et al.  The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big‐eyed arboreal ants , 2005 .

[42]  M. Borowiec,et al.  Three new species and reassessment of the rare Neotropical ant genus Leptanilloides (Hymenoptera, Formicidae, Leptanilloidinae) , 2011, ZooKeys.

[43]  Alexei J. Drummond,et al.  Calibrated Tree Priors for Relaxed Phylogenetics and Divergence Time Estimation , 2011, Systematic biology.

[44]  T. C. Schneirla,et al.  Army ants;: A study in social organization , 1971 .

[45]  M. Novacek,et al.  Extinction and phylogeny , 1992 .

[46]  Tanja Stadler,et al.  Simulating trees with a fixed number of extant species. , 2011, Systematic biology.

[47]  D. Andrade FOSSIL AND EXTANT SPECIES OF CYLINDROMYRMEX (HYMENOPTERA: FORMICIDAE) , 1998 .

[48]  W. L. Brown Contributions toward a reclassification of the Formicidae. V. Ponerinae, tribes Platythyreini, Cerapachyini, Cylindromyrmecini, Acanthostichini, and Aenictogitini. , 2011 .

[49]  P. Lockhart,et al.  Substitutional bias confounds inference of cyanelle origins from sequence data , 1992, Journal of Molecular Evolution.

[50]  P. S. Ward,et al.  Phylogeny and biogeography of the ant subfamily Myrmeciinae (Hymenoptera: Formicidae) , 2003 .

[51]  F. K. Barker,et al.  The pattern and timing of diversification of Philippine endemic rodents: evidence from mitochondrial and nuclear gene sequences. , 2006, Systematic biology.

[52]  M. L. Andrade A remarkable Dominican amber species of Cylindromyrmex with Brazilian affinities and additions to the generic revision (Hymenoptera: Formicidae). , 2001 .

[53]  W. M. Wheeler The ants of the Baltic amber , 2013 .

[54]  G. Dlussky Genera of ants (Hymenoptera : Formicidae) from Baltic amber , 1997 .

[55]  D. Kronauer,et al.  Recent advances in army ant biology (Hymenoptera: Formicidae) , 2009 .

[56]  E. Wilson Ants of the Dominican amber (Hymenoptera: Formicidae). 2. The first fossil army ants. , 1985 .

[57]  C R Woese,et al.  Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. , 1991, Systematic and applied microbiology.

[58]  W. Gotwald,et al.  Army Ants: The Biology of Social Predation , 1995 .

[59]  Maryse Condé Tree of Life , 1992 .

[60]  G. Dlussky The ant subfamilies Ponerinae, Cerapachyinae, and Pseudomyrmecinae (Hymenoptera, Formicidae) in the Late Eocene ambers of Europe , 2009 .

[61]  B. Bolton Abdominal characters and status of the cerapachyine ants (Hymenoptera, Formicidae). , 1990 .

[62]  S. Brady Evolution of the army ant syndrome: The origin and long-term evolutionary stasis of a complex of behavioral and reproductive adaptations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. Brandão,et al.  The first Leptanilloides species (Hymenoptera: Formicidae: Leptanilloidinae) from eastern South America , 2013 .

[64]  Barry Bolton,et al.  Taxonomy of the cerapachyine ant genera Simopone Forel, Vicinopone gen. n. and Tanipone gen. n. (Hymenoptera: Formicidae) , 2012 .

[65]  J. Delabie,et al.  The Ant Genus Sphinctomyrmex Mayr (Hymenoptera, Formicidae, Cerapachyinae) in the Neotropical Region, with the Description of Two New Species , 2012 .

[66]  B. Bolton A taxonomic and zoogeographical census of the extant ant taxa (Hymenoptera: Formicidae) , 1995 .

[67]  P. S. Ward,et al.  Morphological phylogeny of army ants and other dorylomorphs (Hymenoptera: Formicidae) , 2005 .

[68]  C. Moreau,et al.  Bulldog Ants of the Eocene Okanagan Highlands and History of the Subfamily (Hymenoptera: Formicidae: Myrmeciinae) , 2006 .

[69]  M. Crisp,et al.  Explosive Radiation or Cryptic Mass Extinction? Interpreting Signatures in Molecular Phylogenies , 2009, Evolution; international journal of organic evolution.

[70]  D. Marshall,et al.  Cryptic failure of partitioned Bayesian phylogenetic analyses: lost in the land of long trees. , 2010, Systematic biology.

[71]  Brian L. Fisher,et al.  Evaluating alternative hypotheses for the early evolution and diversification of ants , 2006, Proceedings of the National Academy of Sciences.

[72]  G. Dlussky New Ants (Hymenoptera: Formicidae) from Canadian Amber , 1999 .

[73]  T. Schultz,et al.  Major evolutionary transitions in ant agriculture , 2008, Proceedings of the National Academy of Sciences.

[74]  P. S. Ward THE ANT GENUS LEPTANILLOIDES: DISCOVERY OF THE MALE AND EVALUATION OF PHYLOGENETIC RELATIONSHIPS BASED ON DNA SEQUENCE DATA , 2007 .

[75]  C. Moreau,et al.  TESTING THE MUSEUM VERSUS CRADLE TROPICAL BIOLOGICAL DIVERSITY HYPOTHESIS: PHYLOGENY, DIVERSIFICATION, AND ANCESTRAL BIOGEOGRAPHIC RANGE EVOLUTION OF THE ANTS , 2013, Evolution; international journal of organic evolution.