Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations

Abstract. The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in determining the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near-UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the use of this information as input to the OMI (ozone monitoring instrument) near-UV aerosol retrieval algorithm (OMAERUV). A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) observations are used in an upgraded version of the OMAERUV algorithm. AIRS CO measurements are used as an adequate tracer of carbonaceous aerosols, which allows the identification of smoke layers in regions and seasons when the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of high levels of boundary layer pollution undetectable by near-UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show an improvement in OMI aerosol retrieval capabilities.

[1]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[2]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[3]  J. Privette,et al.  Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000) , 2003 .

[4]  Cathy Clerbaux,et al.  Tracking the emission and transport of pollution from wildfires using the IASI CO retrievals: analysis of the summer 2007 Greek fires , 2009 .

[5]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[6]  M. Deeter,et al.  Satellite-observed pollution from Southern Hemisphere biomass burning. , 2006 .

[7]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[8]  Steffen Beirle,et al.  UV Aerosol Indices from SCIAMACHY: introducing the SCattering Index (SCI) , 2009 .

[9]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[11]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[12]  D. Blake,et al.  Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3 , 1994 .

[13]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[14]  O. Torres,et al.  Biomass burning smoke measured using backscattered ultraviolet radiation: SCAR‐B and Brazilian smoke interannual variability , 1998 .

[15]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  Hiren Jethva,et al.  Assessment of OMI near‐UV aerosol optical depth over land , 2014 .

[17]  Yoram J. Kaufman,et al.  An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols , 2005 .

[18]  Piet Stammes,et al.  Atmospheric Chemistry and Physics SCIAMACHY Absorbing Aerosol Index – calibration issues and , 2005 .

[19]  D. Edwards,et al.  Retrieval of tropospheric carbon monoxide for the MOPITT experiment , 1998 .

[20]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[21]  William L. Smith,et al.  Comparative study of aerosol and cloud detected by CALIPSO and OMI , 2012 .

[22]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[23]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[24]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[25]  Pawan K. Bhartia,et al.  Science objectives of the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[26]  V. Freudenthaler,et al.  Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2 , 2011 .

[27]  Piet Stammes,et al.  Absorbing Aerosol Index: Sensitivity analysis, application to GOME and comparison with TOMS , 2005 .

[28]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[29]  W. McMillan,et al.  Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers , 2009 .

[30]  Evgeny Grechko,et al.  Global AIRS and MOPITT CO measurements: Validation, comparison, and links to biomass burning variations and carbon cycle , 2008 .

[31]  B. Holben,et al.  An Accuracy Assessment of the CALIOP/CALIPSO Version 2/Version 3 Daytime Aerosol Extinction Product Based on a Detailed Multi-Sensor, Multi-Platform Case Study , 2011 .

[32]  Hiren Jethva,et al.  Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument , 2011 .

[33]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation. II , 1930 .

[34]  B. Duncan,et al.  NASA A-Train and Terra Observations of the 2010 Russian Wildfires , 2011 .

[35]  Jonathan H. Jiang,et al.  Interpretation of Aura satellite observations of CO and aerosol index related to the December 2006 Australia fires , 2009 .

[36]  Moustafa T. Chahine,et al.  Remote Sounding of Cloudy Atmospheres. I. The Single Cloud Layer , 1974 .

[37]  D. Blake,et al.  Emissions of Trace Gases and Particles from Savanna Fires in Southern Africa , 2003 .

[38]  Hiren Jethva,et al.  Global assessment of OMI aerosol single‐scattering albedo using ground‐based AERONET inversion , 2014 .

[39]  Anders Ångström,et al.  On the Atmospheric Transmission of Sun Radiation and on Dust in the Air , 1929 .

[40]  P. Bhartia,et al.  Detection of biomass burning smoke from TOMS measurements , 1996 .

[41]  Jay R. Herman,et al.  Detection of volcanic ash clouds from Nimbus 7/total ozone mapping spectrometer , 1997 .

[42]  J. Lamarque,et al.  Observations of carbon monoxide and aerosols from the Terra satellite: Northern Hemisphere variability , 2004 .

[43]  Jay R. Herman,et al.  Earth surface reflectivity climatology at 340–380 nm from TOMS data , 1997 .

[44]  J. D. Laat,et al.  An aerosol boomerang: Rapid around-the-world transport of smoke from the December 2006 Australian forest fires observed from space , 2009 .

[45]  David M. Winker,et al.  The global 3-D distribution of tropospheric aerosols as characterized by CALIOP , 2012 .

[46]  J. Warner,et al.  Daily global maps of carbon monoxide from NASA's Atmospheric Infrared Sounder , 2005 .

[47]  W. Hao,et al.  Trace gas measurements in nascent, aged, and cloud‐processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR) , 2003 .

[48]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[49]  Pawan K. Bhartia,et al.  Comparison of Ozone Monitoring Instrument UV Aerosol Products with Aqua/Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer observations in 2006 , 2008 .

[50]  Gregory Leptoukh,et al.  A-Train data depot - bringing Atmospheric measurements together , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.