The design of an acquisitional query processor for sensor networks

We discuss the design of an acquisitional query processor for data collection in sensor networks. Acquisitional issues are those that pertain to where, when, and how often data is physically acquired (sampled) and delivered to query processing operators. By focusing on the locations and costs of acquiring data, we are able to significantly reduce power consumption over traditional passive systems that assume the a priori existence of data. We discuss simple extensions to SQL for controlling data acquisition, and show how acquisitional issues influence query optimization, dissemination, and execution. We evaluate these issues in the context of TinyDB, a distributed query processor for smart sensor devices, and show how acquisitional techniques can provide significant reductions in power consumption on our sensor devices.

[1]  Clyde L. Monma,et al.  Sequencing with Series-Parallel Precedence Constraints , 1979, Math. Oper. Res..

[2]  Toshihide Ibaraki,et al.  On the optimal nesting order for computing N-relational joins , 1984, TODS.

[3]  Carlo Zaniolo,et al.  Optimization of Nonrecursive Queries , 1986, VLDB.

[4]  Michael Stonebraker,et al.  The POSTGRES next generation database management system , 1991, CACM.

[5]  Tomasz Imielinski,et al.  Querying in Highly Mobile Distributed Environments , 1992, VLDB.

[6]  Rafael Alonso,et al.  Database system issues in nomadic computing , 1993, SIGMOD Conference.

[7]  Rafael Alonso,et al.  Query optimization in mobile environments , 1993 .

[8]  Sharma Chakravarthy,et al.  Composite Events for Active Databases: Semantics, Contexts and Detection , 1994, VLDB.

[9]  Eric N. Hanson,et al.  The Design and Implementation of the Ariel Active Database Rule System , 1996, IEEE Trans. Knowl. Data Eng..

[10]  Joseph M. Hellerstein,et al.  Optimization techniques for queries with expensive methods , 1998, TODS.

[11]  A. Prasad Sistla,et al.  DOMINO: databases fOr MovINg Objects tracking , 1999, SIGMOD '99.

[12]  Alon Y. Halevy,et al.  An adaptive query execution system for data integration , 1999, SIGMOD '99.

[13]  Calton Pu,et al.  Continual Queries for Internet Scale Event-Driven Information Delivery , 1999, IEEE Trans. Knowl. Data Eng..

[14]  Joseph M. Hellerstein,et al.  Eddies: continuously adaptive query processing , 2000, SIGMOD '00.

[15]  David J. DeWitt,et al.  NiagaraCQ: a scalable continuous query system for Internet databases , 2000, SIGMOD '00.

[16]  Robert Szewczyk,et al.  System architecture directions for networked sensors , 2000, ASPLOS IX.

[17]  S. Jackson,et al.  Sensor Web for in situ exploration of gaseous biosignatures , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[18]  Deborah Estrin,et al.  Directed diffusion: a scalable and robust communication paradigm for sensor networks , 2000, MobiCom '00.

[19]  Gregory J. Pottie,et al.  Wireless integrated network sensors , 2000, Commun. ACM.

[20]  Joseph M. Hellerstein,et al.  Online dynamic reordering , 2000, The VLDB Journal.

[21]  Donald Kossmann,et al.  The state of the art in distributed query processing , 2000, CSUR.

[22]  Jerry Zhao,et al.  Habitat monitoring: application driver for wireless communications technology , 2001, CCRV.

[23]  Minos N. Garofalakis,et al.  Approximate Query Processing: Taming the TeraBytes , 2001, VLDB.

[24]  Phillip B. Gibbons,et al.  Approximate Query Processing: Taming the TeraBytes! A Tutorial , 2001 .

[25]  Divesh Srivastava,et al.  On computing correlated aggregates over continual data streams , 2001, SIGMOD '01.

[26]  Philippe Bonnet,et al.  Towards Sensor Database Systems , 2001, Mobile Data Management.

[27]  David E. Culler,et al.  A transmission control scheme for media access in sensor networks , 2001, MobiCom '01.

[28]  Johannes Gehrke,et al.  Query optimization in compressed database systems , 2001, SIGMOD '01.

[29]  Kyuseok Shim,et al.  Approximate query processing using wavelets , 2001, The VLDB Journal.

[30]  Wei Hong,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Tag: a Tiny Aggregation Service for Ad-hoc Sensor Networks , 2022 .

[31]  Deborah Estrin,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation Fine-grained Network Time Synchronization Using Reference Broadcasts , 2022 .

[32]  Samuel Madden,et al.  Fjording the stream: an architecture for queries over streaming sensor data , 2002, Proceedings 18th International Conference on Data Engineering.

[33]  Hector Garcia-Molina,et al.  Routing indices for peer-to-peer systems , 2002, Proceedings 22nd International Conference on Distributed Computing Systems.

[34]  Samuel Madden,et al.  Continuously adaptive continuous queries over streams , 2002, SIGMOD '02.

[35]  Michael Stonebraker,et al.  Monitoring Streams - A New Class of Data Management Applications , 2002, VLDB.

[36]  Jennifer Widom,et al.  Best-effort cache synchronization with source cooperation , 2002, SIGMOD '02.

[37]  Deborah Estrin,et al.  Complex Behavior at Scale: An Experimental Study of Low-Power Wireless Sensor Networks , 2002 .

[38]  David M. Auslander,et al.  Multi-Sensor Single-Actuator Control of HVAC Systems , 2002 .

[39]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[40]  Yong Yao,et al.  The cougar approach to in-network query processing in sensor networks , 2002, SGMD.

[41]  R. Motwani,et al.  Query Processing, Approximation, and Resource Management in a Data Stream Management System , 2003, CIDR.

[42]  Wei Hong,et al.  Beyond Average: Toward Sophisticated Sensing with Queries , 2003, IPSN.